基于多种机器学习的豆瓣电影评分预测与多维度可视化【可加系统】

有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主

在本研究中,我们采用Python编程语言,利用爬虫技术实时获取豆瓣电影最新数据。通过分析豆瓣网站的结构,我们设计了一套有效的策略来爬取电影相关的JSON格式数据。为减少对服务器的频繁请求,我们实施了基于正态分布的延迟策略。数据采集后,使用Python中的Pandas库进行初步处理,将无序信息转换为结构化数据,包括处理空值、字符串格式化和字段扩展。然后,我们将整理好的数据存储到MySQL数据库中,进行深入的数据挖掘。通过分析不同数据维度,我们深入探讨了电影流行趋势和观众喜好等多个方面。

此外,本研究还包括了数据清洗和特征工程步骤,其中对非文本数据进行了标签编码,转换为数值类型,并确保所有字段的一致性。利用机器学习技术,我们将数据集分为80%的训练集和20%的测试集,并对电影评分进行预测。我们选用了线性回归、决策树、随机森林和梯度提升回归等多种算法进行数据训练和预测,并通过均方误差、平均绝对误差和R^2等指标对模型性能进行评估。最后,借助Pyecharts工具,我们将分析结果转化为网页视图,实现了数据的直观展示。

综上所述,本研究从实时数据获取、数据清洗预处理、数据分析可视化到模型预测等多个方面展开,对豆瓣电影的网站数据进行了全面而深入的分析,旨在为用户和电影产业提供基于数据的可靠决策建议。

在这里插入图片描述在这里插入图片描述

该项目在原有基础上升级了模型预测

点击下面标题即可跳转到详细界面

这个是包含数据库操作和大量的可视化页面(web)

基于Python的海量豆瓣电影、数据获取、数据预处理、数据分析、可视化、大屏设计项目(含数据库)

这个是包含系统设计的,可以点击下去看看具体的内容

基于Python与Flask的豆瓣电影海量数据分析与可视化系统

这个项目从爬虫、数据预处理、数据分析、可视化、大屏设计、系统搭建、模型预测,进行了全流程的设计,是一个不可多得的一个好项目,知识在于不断地学习和进步,,而不是故步自封,故将好的项目分享出来供大家参考。

在经过彻底的数据清洗后,我们得到了一个高品质数据集,并对其进行了特征工程。这一步骤至关重要,因为它旨在优化机器学习模型的性能。为此,我们通过特征转换来实现这一目标。具体来说,对于非文本数据,我们使用了标签编码,将其转化为数值型数据,这一转换对大部分机器学习算法而言是必要的,因为它们大多需要数值输入。转换完成后,我们对所有字段进行了一致性和整齐性检查,以确保数据的准确性和一致性。

在这里插入图片描述
有首先,我们需要将数据集分成两部分:训练集和测试集。这一步骤对于任何机器学习项目都是至关重要的,因为它确保了我们的模型在未知数据上的表现能够得到有效评估。通常,我们会保留大部分数据用于训练(例如80%),而将剩余的数据用作测试集。

我们接着选择了线性回归、决策树、随机森林和梯度提升回归这四种回归算法进行实验。每种算法都有其独特特性和应用场景,目的是为了找出最适合当前数据集的模型。

为评估模型预测效果,我们采用了均方误差(MSE)、平均绝对误差(MAE)和决定系数(R^2)这三种指标。这些指标能从不同维度全面分析模型的预测能力。

最后,我们利用可视化工具展示了各模型的训练和预测结果,以便直观地比较算法性能,并帮助我们更好地理解和解释这些结果。通过这些比较和分析,我们能够为实际问题选择最合适的模型和策略。

在这里插入图片描述
评价指标包括均方误差(MSE)、平均绝对误差(MAE)、R²分数和均方根误差(RMSE)。这些指标是衡量回归模型性能的关键因素,反映了模型对数据的拟合程度和预测准确性。

线性回归(Linear Regression):

  • MSE: 1.0289
  • MAE: 0.7838
  • R²: 0.4738
  • RMSE: 1.0144

线性回归表现最差,其MSE和RMSE值较高,说明模型在预测时的误差较大。R²值仅为0.4738,表明模型仅解释了约47.38%的数据变异性。这可能是因为电影评分的影响因素复杂,而线性回归模型相对较为简单,无法有效捕捉所有的数据特征。

决策树回归(Decision Tree Regression):

  • MSE: 0.4094
  • MAE: 0.2787
  • R²: 0.7906
  • RMSE: 0.6399

决策树回归的表现比线性回归有显著提升。它的MSE和RMSE值较低,说明预测误差小。R²值达到0.7906,意味着模型能够较好地解释数据变异性。但是,决策树容易过拟合,特别是在处理包含许多参数和复杂结构的数据时。

随机森林回归(Random Forest Regression):

  • MSE: 0.2304
  • MAE: 0.3010
  • R²: 0.8822
  • RMSE: 0.4800

随机森林回归在所有模型中表现最优。其MSE和RMSE值最低,表明预测误差最小。R²值为0.8822,这表示模型能够解释约88.22%的数据变异性,显示出很高的预测准确性。随机森林通过集成多个决策树来减少过拟合的风险,并提高模型的稳定性。

梯度提升回归(Gradient Boosting Regression):

  • MSE: 0.5595
  • MAE: 0.5607
  • R²: 0.7139
  • RMSE: 0.7480

梯度提升回归的表现介于决策树和随机森林之间。它的MSE和RMSE值适中,而R²值为0.7139,表明模型在预测方面具有良好的准确性。梯度提升通过逐步优化减少误差,但在某些情况下可能会导致过拟合。

综上所述,每种模型都有其优势和局限性。在选择模型时,我们需要考虑数据的特性和预测任务的需求。对于当前的电影评分预测任务,随机森林回归以其高准确性和较低的预测误差表现最佳。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

每文一语

串联在一起的知识点就是一个电池

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/387878.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[FBCTF2019]RCEService (PCRE回溯绕过和%a0换行绕过)

json格式输入ls出现index.php 这道题原本是给了源码的&#xff0c;BUUCTF没给 源码&#xff1a; <?phpputenv(PATH/home/rceservice/jail);if (isset($_REQUEST[cmd])) {$json $_REQUEST[cmd];if (!is_string($json)) {echo Hacking attempt detected<br/><br/…

ElasticSearch学习篇15_《检索技术核心20讲》进阶篇之TopK检索

背景 学习极客实践课程《检索技术核心20讲》https://time.geekbang.org/column/article/215243&#xff0c;文档形式记录笔记。 相关问题&#xff1a; ES全文检索是如何进行相关性打分的&#xff1f;ES中计算相关性得分的时机?如何加速TopK检索&#xff1f;三种思路 精准To…

eclipse ui bug

eclipse ui bug界面缺陷&#xff0c;可能项目过多&#xff0c;特别maven项目过多&#xff0c;下载&#xff0c;自动编译&#xff0c;加载更新界面异常 所有窗口死活Restore不回去了 1&#xff09;尝试创建项目&#xff0c;还原界面&#xff0c;失败 2&#xff09;关闭所有窗口&…

Python写UI自动化--playwright(pytest.ini配置)

在 pytest.ini 文件中配置 playwright 的选项可以更好地控制测试执行的过程。 在终端输入pytest --help&#xff0c;可以找到playwright的配置参数 目录 1. --browser{chromium,firefox,webkit} 2. --headed 3. --browser-channelBROWSER_CHANNEL 4. --slowmoSLOWMO 5. …

Photos框架 - 自定义媒体选择器(UI列表)

​​​​​​​Photos框架 - 自定义媒体资源选择器&#xff08;数据部分&#xff09; Photos框架 - 自定义媒体选择器&#xff08;UI列表&#xff09;​​​​​​​ Photos框架 - 自定义媒体选择器&#xff08;UI预览&#xff09; Photos框架 - 自定义媒体选择器&#xff0…

规划决策算法(四)---Frenet坐标系

知乎&#xff1a;坐标系转换 1.Frenet 坐标系 什么是 Frenet 坐标系&#xff1a; 为什么使用 Frenet 坐标系&#xff1a; 通常情况&#xff0c;我们只会关注车辆当前距离左右车道线的距离&#xff0c;来判断是否偏离车道&#xff0c;是否需要打方向盘进行方向微调。而不是基于…

【YashanDB知识库】yasdb jdbc驱动集成BeetISQL中间件,业务(java)报autoAssignKey failure异常

问题现象 BeetISQL中间件版本&#xff1a;2.13.8.RELEASE 客户在调用BeetISQL提供的api向yashandb的表中执行batch insert并将返回sequence设置到传入的java bean时&#xff0c;报如下异常&#xff1a; 问题的风险及影响 影响业务流程正常执行&#xff0c;无法获得batch ins…

matlab仿真 数字信号载波传输(下)

&#xff08;内容源自详解MATLAB&#xff0f;SIMULINK 通信系统建模与仿真 刘学勇编著第七 章内容&#xff0c;有兴趣的读者请阅读原书&#xff09; clear all M8; msg[1 4 3 0 7 5 2 6]; ts0.01; T1; %t0:ts:T; t0:ts:T-ts; %x0:ts:length(msg); x0:ts:length(msg)-ts; f…

决策树基础

概述 决策树是一种树型结构&#xff0c;其中每个内部结点表示在一个属性上的测试&#xff0c;每个分支代表一 个测试输出&#xff0c;每个叶结点代表一种类别。决策树学习采用的是自顶向下的递归方法&#xff0c;其基本思想是以信息熵为度量构造一棵熵值下降最快的树&#xff…

一层5x1神经网络绘制训练100轮后权重变化的图像

要完成这个任务&#xff0c;我们可以使用Python中的PyTorch库来建立一个简单的神经网络&#xff0c;网络结构只有一个输入层和一个输出层&#xff0c;输入层有5个节点&#xff0c;输出层有1个节点。训练过程中&#xff0c;我们将记录权重的变化&#xff0c;并在训练100轮后绘制…

github简单地操作

1.调节字体大小 选择options 选择text 选择select 选择你需要的参数就可以了。 2.配置用户名和邮箱 桌面右键&#xff0c;选择git Bash Here git config --global user.name 用户名 git config --global user.email 邮箱名 3.用git实现代码管理的过程 下载别人的项目 git …

反爬虫限制:有哪些方法可以保护网络爬虫不被限制?

目前&#xff0c;爬虫已经成为互联网数据获取最主流的方式。但为了保证爬虫顺利采集数据&#xff0c;需要防范网站的反爬虫机制&#xff0c;降低IP被限制的风险&#xff0c;这样才能提高爬虫工作的效率。那么&#xff0c;如何防止网络爬虫被限制呢&#xff1f;下面介绍几种有效…

dpdk发送udp报文

dpdk接收到udp报文后&#xff0c;自己构造一个udp报文&#xff0c;将收到的报文中的源mac&#xff0c;目的mac&#xff0c;源ip&#xff0c;目的ip&#xff0c;源端口和目的端口交换下顺序填充到新的udp报文中&#xff0c;报文中的负载数据和收到的udp保持一致。 注&#xff1…

Yarn UI 时间问题,相差8小时

位置 $HADOOP_HOME/share/hadoop/yarn/hadoop-yarn-common-2.6.1.jar 查看 jar tf hadoop-yarn-common-2.6.1.jar |grep yarn.dt.plugins.js webapps/static/yarn.dt.plugins.js 解压 jar -xvf hadoop-yarn-common-2.6.1.jar webapps/static/yarn.dt.plugins.js inflated: we…

【文件解析漏洞】实战详解!

漏洞描述&#xff1a; 文件解析漏洞是由于中间件错误的将任意格式的文件解析成网页可执行文件&#xff0c;配合文件上传漏洞进行GetShell的漏洞! IIS解析漏洞&#xff1a; IIS6.X&#xff1a; 方式一:目录解析 在网站下建立文件夹的名字为.asp/.asa 的文件夹&#xff0c;其目…

传输层(port)UDP/TCP——解决怎么发,发多少,出错了怎么办

**传输层&#xff1a;**负责数据能够从发送端传输接收端. 传输层所封装的报头里一定有&#xff1a;源端口号和目的端口号的。 **端口号&#xff1a;**可以标识一台主机中的唯一一个进程&#xff08;运用程序&#xff09;&#xff0c;这样当数据传输到传输层的时候就可以通过端…

单向链表(常规和带哨兵)

1.定义 在计算机科学中&#xff0c;链表是数据元素的线性集合&#xff0c;每个元素都指向下一个元素&#xff0c;元素存储上并不连续 2.分类 链表中还有一种特殊的节点称为哨兵结点&#xff0c;也叫哑元结点、首元结点&#xff0c;它不存储数据&#xff0c;通常用作头尾&…

艾体宝干货 | 如何分析关键网络性能指标?持续接收样品试用申请!

网络性能是企业顺利运营的重要基础&#xff0c;而Allegro流量分析仪作为一款强大的网络性能分析工具&#xff0c;为企业提供了深入了解网络运行状况的途径。在本文中&#xff0c;我们将探讨如何利用Allegro 流量分析仪分析关键网络性能指标&#xff0c;以优化网络性能、提高安全…

视频监控国标GB28181平台EasyGBS如何更换默认的SQLite数据库?

视频流媒体安防监控国标GB28181平台EasyGBS视频能力丰富&#xff0c;部署灵活&#xff0c;既能作为业务平台使用&#xff0c;也能作为安防监控视频能力层被业务管理平台调用。国标GB28181视频EasyGBS平台可提供流媒体接入、处理、转发等服务&#xff0c;支持内网、公网的安防视…

Apache2之Ubuntu-XXE漏洞渗透

一、配置靶场 第一步&#xff1a;打开kali&#xff0c;作为攻击机&#xff0c;打开是黑屏不要蒙圈&#xff0c;是正常的 第二步&#xff1a;配置局域网主机 探测局域网内的所有主机-- 1、查看虚拟机的网络配置 2、查看到我的子网地址为192.168.189.0 第三步&#xff1a;使用…