一、RestHighLevelClient介绍
JavaREST客户端有两种模式:
- Java Low Level REST Client:ES官方的低级客户端。低级别的客户端通过http与Elasticsearch集群通信。
- Java High Level REST Client:ES官方的高级客户端。基于上面的低级客户端,也是通过HTTP与ES集群进行通信。它提供了更多的接口。
下面介绍下SpringBoot如何通过elasticsearch-rest-high-level-client工具操作ElasticSearch。当然也可以通过spring-data-elasticsearch来操作ElasticSearch,而本文仅是elasticsearch-rest-high-level-client的案例介绍,所以本文中我并未使用spring-data-elasticsearch,后期我会补上。
注意事项:客户端(Client)Jar包的版本尽量不要大于Elasticsearch本体的版本,否则可能出现客户端中使用的某些API在Elasticsearch中不支持。
这里需要说一下,能使用RestHighLevelClient尽量使用它,为什么不推荐使用Spring家族封装的spring-data-elasticsearch。主要原因是灵活性和更新速度,Spring将ElasticSearch过度封装,让开发者很难跟ES的DSL查询语句进行关联。再者就是更新速度,ES的更新速度是非常快,但是spring-data-elasticsearch更新速度比较缓慢。并且spring-data-elasticsearch在Elasticsearch6.x和7.x版本上的Java API差距很大,如果升级版本需要花点时间来了解。
TIPS:spring-data-elasticsearch的底层其实也是否则了elasticsearch-rest-high-level-client的api。
二、引入依赖
特别注意:引入的依赖最好与SpringBoot中的版本一样,免得出现版本冲突。
<!--引入es-high-level-client的坐标-->
<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId><version>7.6.2</version>
</dependency>
<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-client</artifactId><version>7.6.2</version>
</dependency>
<dependency><groupId>org.elasticsearch</groupId><artifactId>elasticsearch</artifactId><version>7.6.2</version>
</dependency><!--mybatis-->
<dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.1.0</version>
</dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId>
</dependency>
完整的Maven依赖:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0https://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.thr.elasticsearch</groupId><artifactId>elasticsearch-rest-high-level-client-demo</artifactId><version>0.0.1-SNAPSHOT</version><name>elasticsearch-rest-high-level-client-demo</name><description>Demo project for Spring Boot</description><properties><java.version>1.8</java.version><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding><spring-boot.version>2.3.7.RELEASE</spring-boot.version></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope><exclusions><exclusion><groupId>org.junit.vintage</groupId><artifactId>junit-vintage-engine</artifactId></exclusion></exclusions></dependency><!--引入es-high-level-client的坐标--><dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId><version>7.6.2</version></dependency><dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-client</artifactId><version>7.6.2</version></dependency><dependency><groupId>org.elasticsearch</groupId><artifactId>elasticsearch</artifactId><version>7.6.2</version></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.72</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional></dependency><dependency><groupId>junit</groupId><artifactId>junit</artifactId><scope>test</scope></dependency><!--mybatis--><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.1.0</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId></dependency></dependencies><dependencyManagement><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-dependencies</artifactId><version>${spring-boot.version}</version><type>pom</type><scope>import</scope></dependency></dependencies></dependencyManagement><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><version>3.8.1</version><configuration><source>1.8</source><target>1.8</target><encoding>UTF-8</encoding></configuration></plugin><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><version>2.3.7.RELEASE</version><configuration><mainClass>com.thr.elasticsearch.ESRestHighLevelClientApplication</mainClass></configuration><executions><execution><id>repackage</id><goals><goal>repackage</goal></goals></execution></executions></plugin></plugins></build></project>
三、ES的配置
(1)、创建索引
PUT /goods
{"mappings": {"properties": {"brandName": {"type": "keyword"},"categoryName": {"type": "keyword"},"createTime": {"type": "date","format": "yyyy-MM-dd HH:mm:ss"},"id": {"type": "keyword"},"price": {"type": "double"},"saleNum": {"type": "integer"},"status": {"type": "integer"},"stock": {"type": "integer"},"title": {"type": "text","analyzer": "ik_max_word","search_analyzer": "ik_smart"}}}
}
(2)、application.yml 配置文件
elasticsearch:host: 116.205.230.143port: 9200
spring:# 应用名称application:name: elasticsearch-spring-datadatasource:username: rootpassword: 123456url: jdbc:mysql://116.205.230.143:3306/es?useSSL=false&serverTimezone=UTC&characterEncoding=utf8&allowMultiQueries=truedriver-class-name: com.mysql.cj.jdbc.Driverelasticsearch:rest:# 定位ES的位置uris: http://116.205.230.143:9200
mybatis:type-aliases-package: com.thr.elastisearch.domainmapper-locations: classpath:mapper/*.xml
(3)、java 连接配置类
写一个Java配置类读取application中的配置信息:
/*** ES的配置类* ElasticSearchConfig** @author tanghaorong*/
@Data
@Configuration
@ConfigurationProperties(prefix = "elasticsearch")
public class ElasticSearchConfig {private String host;private Integer port;/*** 如果@Bean没有指定bean的名称,那么这个bean的名称就是方法名*/@Beanpublic RestHighLevelClient restHighLevelClient() {return new RestHighLevelClient(RestClient.builder(new HttpHost(host, port, "http")));}
}
(4)、mybatis配置
/*** Mapper接口** @author tanghaorong*/
@Repository
@Mapper
public interface GoodsMapper {/*** 查询所有*/List<Goods> findAll();
}
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd"><mapper namespace="com.thr.elasticsearch.dao.GoodsMapper"><select id="findAll" resultType="com.thr.elasticsearch.domain.Goods">select `id`,`title`,`price`,`stock`,`saleNum`,`createTime`,`categoryName`,`brandName`,`status`from goods</select>
</mapper>
(5)、实体对象
@Data
@Accessors(chain = true) // 链式赋值(连续set方法)
@AllArgsConstructor // 全参构造
@NoArgsConstructor // 无参构造
public class Goods {/*** 商品编号*/private Long id;/*** 商品标题*/private String title;/*** 商品价格*/private BigDecimal price;/*** 商品库存*/private Integer stock;/*** 商品销售数量*/private Integer saleNum;/*** 商品分类*/private String categoryName;/*** 商品品牌*/private String brandName;/*** 上下架状态*/private Integer status;/*** 商品创建时间*/@JSONField(format = "yyyy-MM-dd HH:mm:ss")private Date createTime;
}
(6)、测试类
@SpringBootTest
@RunWith(SpringRunner.class)
@Slf4j
public class ESRestHighLevelClientApplicationTests {@Testpublic void test1() throws IOException {}
}
需要注意的是,测试启动类要和项目的启动类位于同一个包中,否则启动可能会报错。
(7)、项目整体结构
四、索引操作
/*** 创建索引库和映射表结构* 注意:索引一般不会怎么创建*/
@Test
public void indexCreate() throws Exception {IndicesClient indicesClient = restHighLevelClient.indices();// 创建索引CreateIndexRequest indexRequest = new CreateIndexRequest("goods111");// 创建表 结构String mapping = "{\n" +" \"properties\": {\n" +" \"brandName\": {\n" +" \"type\": \"keyword\"\n" +" },\n" +" \"categoryName\": {\n" +" \"type\": \"keyword\"\n" +" },\n" +" \"createTime\": {\n" +" \"type\": \"date\",\n" +" \"format\": \"yyyy-MM-dd HH:mm:ss\"\n" +" },\n" +" \"id\": {\n" +" \"type\": \"keyword\"\n" +" },\n" +" \"price\": {\n" +" \"type\": \"double\"\n" +" },\n" +" \"saleNum\": {\n" +" \"type\": \"integer\"\n" +" },\n" +" \"status\": {\n" +" \"type\": \"integer\"\n" +" },\n" +" \"stock\": {\n" +" \"type\": \"integer\"\n" +" },\n" +" \"title\": {\n" +" \"type\": \"text\",\n" +" \"analyzer\": \"ik_max_word\",\n" +" \"search_analyzer\": \"ik_smart\"\n" +" }\n" +" }\n" +" }";// 把映射信息添加到request请求里面// 第一个参数:表示数据源// 第二个参数:表示请求的数据类型indexRequest.mapping(mapping, XContentType.JSON);// 请求服务器CreateIndexResponse response = indicesClient.create(indexRequest, RequestOptions.DEFAULT);System.out.println(response.isAcknowledged());
}/*** 获取表结构* GET goods/_mapping*/
@Test
public void getMapping() throws Exception {IndicesClient indicesClient = restHighLevelClient.indices();// 创建get请求GetIndexRequest request = new GetIndexRequest("goods");// 发送get请求GetIndexResponse response = indicesClient.get(request, RequestOptions.DEFAULT);// 获取表结构Map<String, MappingMetaData> mappings = response.getMappings();for (String key : mappings.keySet()) {System.out.println("key--" + mappings.get(key).getSourceAsMap());}
}/*** 删除索引库*/
@Test
public void indexDelete() throws Exception {IndicesClient indicesClient = restHighLevelClient.indices();// 创建delete请求方式DeleteIndexRequest deleteIndexRequest = new DeleteIndexRequest("goods");// 发送delete请求AcknowledgedResponse response = indicesClient.delete(deleteIndexRequest, RequestOptions.DEFAULT);System.out.println(response.isAcknowledged());
}/*** 判断索引库是否存在*/
@Test
public void indexExists() throws Exception {IndicesClient indicesClient = restHighLevelClient.indices();// 创建get请求GetIndexRequest request = new GetIndexRequest("goods");// 判断索引库是否存在boolean result = indicesClient.exists(request, RequestOptions.DEFAULT);System.out.println(result);
}
五、文档操作
/*** 增加文档信息*/
@Test
public void addDocument() throws IOException {// 创建商品信息Goods goods = new Goods();goods.setId(1L);goods.setTitle("Apple iPhone 13 Pro (A2639) 256GB 远峰蓝色 支持移动联通电信5G 双卡双待手机");goods.setPrice(new BigDecimal("8799.00"));goods.setStock(1000);goods.setSaleNum(599);goods.setCategoryName("手机");goods.setBrandName("Apple");goods.setStatus(0);goods.setCreateTime(new Date());// 将对象转为jsonString data = JSON.toJSONString(goods);// 创建索引请求对象IndexRequest indexRequest = new IndexRequest("goods").id(goods.getId() + "").source(data, XContentType.JSON);// 执行增加文档IndexResponse response = restHighLevelClient.index(indexRequest, RequestOptions.DEFAULT);log.info("创建状态:{}", response.status());
}/*** 获取文档信息*/
@Test
public void getDocument() throws IOException {// 创建获取请求对象GetRequest getRequest = new GetRequest("goods", "1");GetResponse response = restHighLevelClient.get(getRequest, RequestOptions.DEFAULT);System.out.println(response.getSourceAsString());
}/*** 更新文档信息*/
@Test
public void updateDocument() throws IOException {// 设置商品更新信息Goods goods = new Goods();goods.setTitle("Apple iPhone 13 Pro Max (A2644) 256GB 远峰蓝色 支持移动联通电信5G 双卡双待手机");goods.setPrice(new BigDecimal("9999"));// 将对象转为jsonString data = JSON.toJSONString(goods);// 创建索引请求对象UpdateRequest updateRequest = new UpdateRequest("goods", "1");// 设置更新文档内容updateRequest.doc(data, XContentType.JSON);// 执行更新文档UpdateResponse response = restHighLevelClient.update(updateRequest, RequestOptions.DEFAULT);log.info("创建状态:{}", response.status());
}/*** 删除文档信息*/
@Test
public void deleteDocument() throws IOException {// 创建删除请求对象DeleteRequest deleteRequest = new DeleteRequest("goods", "1");// 执行删除文档DeleteResponse response = restHighLevelClient.delete(deleteRequest, RequestOptions.DEFAULT);log.info("删除状态:{}", response.status());
}
六、导入测试数据
下载测试数据
下载链接:https://files.cnblogs.com/files/tanghaorong/goods.zip?t=1654416464
下载后导入数据库中,大概有900多条。
导入测试数据至ES中:
/*** 批量导入测试数据*/
@Test
public void importData() throws IOException {//1.查询所有数据,mysqlList<Goods> goodsList = goodsMapper.findAll();//2.bulk导入BulkRequest bulkRequest = new BulkRequest();//2.1 循环goodsList,创建IndexRequest添加数据for (Goods goods : goodsList) {//将goods对象转换为json字符串String data = JSON.toJSONString(goods);//map --> {}IndexRequest indexRequest = new IndexRequest("goods");indexRequest.id(goods.getId() + "").source(data, XContentType.JSON);bulkRequest.add(indexRequest);}BulkResponse response = restHighLevelClient.bulk(bulkRequest, RequestOptions.DEFAULT);System.out.println(response.status());
}
导入成功。
七、DSL高级查询操作
7.1 精确查询(term)
term查询:不会分析查询条件,只有当词条和查询字符串完全匹配时才匹配,也就是精确查找,比如数字,日期,布尔值或 not_analyzed 的字符串(未经分析的文本数据类型)
terms查询:terms 跟 term 有点类似,但 terms 允许指定多个匹配条件。 如果某个字段指定了多个值,那么文档需要一起去 做匹配:
/*** 精确查询(termQuery)*/
@Test
public void termQuery() {try {// 构建查询条件// (注意:termQuery支持多种格式查询,如boolean、int、double、string等,这里使用的是string的查询)SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(QueryBuilders.termQuery("title", "华为"));// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info("=======" + userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}/*** terms:多个查询内容在一个字段中进行查询*/
@Test
public void termsQuery() {try {// 构建查询条件// (注意:termsQuery支持多种格式查询,如boolean、int、double、string等,这里使用的是string的查询)SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(QueryBuilders.termsQuery("title", "华为", "OPPO", "TCL"));// 展示100条,默认只展示10条记录searchSourceBuilder.size(100);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}
7.2 全文查询(match)
全文查询会分析查询条件,先将查询条件进行分词,然后查询,求并集。
term和match的区别是:match是经过analyer的,也就是说,文档首先被分析器给处理了。根据不同的分析器,分析的结果也稍显不同,然后再根据分词结果进行匹配。term则不经过分词,它是直接去倒排索引中查找了精确的值了。
match 查询语法汇总:
- match_all:查询全部。
- match:返回所有匹配的分词。
- match_phrase:短语查询,在match的基础上进一步查询词组,可以指定slop分词间隔。
- match_phrase_prefix:前缀查询,根据短语中最后一个词组做前缀匹配,可以应用于搜索提示,但注意和max_expanions搭配。其实默认是50.......
- multi_match:多字段查询,使用相当的灵活,可以完成match_phrase和match_phrase_prefix的工作。
/*** 匹配查询符合条件的所有数据,并设置分页*/
@Test
public void matchAllQuery() {try {// 构建查询条件MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();// 创建查询源构造器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(matchAllQueryBuilder);// 设置分页searchSourceBuilder.from(0);searchSourceBuilder.size(3);// 设置排序searchSourceBuilder.sort("price", SortOrder.ASC);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}/*** 匹配查询数据*/
@Test
public void matchQuery() {try {// 构建查询条件SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(QueryBuilders.matchQuery("title", "华为"));// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}/*** 词语匹配查询*/
@Test
public void matchPhraseQuery() {try {// 构建查询条件SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(QueryBuilders.matchPhraseQuery("title", "三星"));// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status())&& searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}/*** 内容在多字段中进行查询*/
@Test
public void matchMultiQuery() {try {// 构建查询条件SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(QueryBuilders.multiMatchQuery("手机", "title", "categoryName"));// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status())&& searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}
7.3 通配符查询(wildcard)
wildcard查询:会对查询条件进行分词。还可以使用通配符 ?(任意单个字符) 和 * (0个或多个字符)
/*** 查询所有以 “三” 结尾的商品信息* <p>* *:表示多个字符(0个或多个字符)* ?:表示单个字符*/
@Test
public void wildcardQuery() {try {// 构建查询条件SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(QueryBuilders.wildcardQuery("title", "*三"));// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}
7.4 模糊查询(fuzzy)
/*** 模糊查询所有以 “三” 结尾的商品信息*/
@Test
public void fuzzyQuery() {try {// 构建查询条件SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(QueryBuilders.fuzzyQuery("title", "三").fuzziness(Fuzziness.AUTO));// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status())&& searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}
7.5 排序查询(sort)
注意:需要分词的字段不可以直接排序,比如:text类型,如果想要对这类字段进行排序,需要特别设置:对字段索引两次,一次索引分词(用于搜索)一次索引不分词(用于排序),es默认生成的text类型字段就是通过这样的方法实现可排序的。
/*** 排序查询(sort) 代码同matchAllQuery* 匹配查询符合条件的所有数据,并设置分页*/
@Test
public void matchAllQuery() {try {// 构建查询条件MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();// 创建查询源构造器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(matchAllQueryBuilder);// 设置分页searchSourceBuilder.from(0);searchSourceBuilder.size(3);// 设置排序searchSourceBuilder.sort("price", SortOrder.ASC);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status())&& searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}
7.6 分页查询(page)
Elasticsearch的分页查询和 SQL 使用 LIMIT 关键字返回只有一页的结果一样,Elasticsearch 接受 from 和 size 参数:
- size : 结果数,默认10
- from : 跳过开始的结果数,即从哪一行开始获取数据,默认0
这种方式分页查询如果需要深度分页,那么这种方式性能不太好。
/*** 分页查询(page) 代码同matchAllQuery* 匹配查询符合条件的所有数据,并设置分页*/
@Test
public void matchAllQuery() {try {// 构建查询条件MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();// 创建查询源构造器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(matchAllQueryBuilder);// 设置分页searchSourceBuilder.from(0);searchSourceBuilder.size(3);// 设置排序searchSourceBuilder.sort("price", SortOrder.ASC);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status())&& searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}
7.7 滚动查询(scroll)
滚动查询可以优化ES的深度分页,但是需要维护scrollId
/*** 根据查询条件滚动查询* 可以用来解决深度分页查询问题*/
@Test
public void scrollQuery() {// 假设用户想获取第70页数据,其中每页10条int pageNo = 70;int pageSize = 10;// 定义请求对象SearchRequest searchRequest = new SearchRequest("goods");// 构建查询条件SearchSourceBuilder builder = new SearchSourceBuilder();searchRequest.source(builder.query(QueryBuilders.matchAllQuery()).size(pageSize));String scrollId = null;// 3、发送请求到ESSearchResponse scrollResponse = null;// 设置游标id存活时间Scroll scroll = new Scroll(TimeValue.timeValueMinutes(2));// 记录所有游标idList<String> scrollIds = new ArrayList<>();for (int i = 0; i < pageNo; i++) {try {// 首次检索if (i == 0) {//记录游标idsearchRequest.scroll(scroll);// 首次查询需要指定索引名称和查询条件SearchResponse response = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 下一次搜索要用到该游标idscrollId = response.getScrollId();// 记录所有游标id}// 非首次检索else {// 不需要在使用其他条件,也不需要指定索引名称,// 只需要使用执行游标id存活时间和上次游标id即可,毕竟信息都在上次游标id里面呢SearchScrollRequest searchScrollRequest = new SearchScrollRequest(scrollId);searchScrollRequest.scroll(scroll);scrollResponse = restHighLevelClient.scroll(searchScrollRequest,RequestOptions.DEFAULT);// 下一次搜索要用到该游标idscrollId = scrollResponse.getScrollId();// 记录所有游标id}scrollIds.add(scrollId);} catch (Exception e) {e.printStackTrace();}}//清除游标idClearScrollRequest clearScrollRequest = new ClearScrollRequest();clearScrollRequest.scrollIds(scrollIds);try {restHighLevelClient.clearScroll(clearScrollRequest, RequestOptions.DEFAULT);} catch (IOException e) {System.out.println("清除滚动查询游标id失败");e.printStackTrace();}// 4、处理响应结果System.out.println("滚动查询返回数据:");assert scrollResponse != null;SearchHits hits = scrollResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods goods = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(goods.toString());}
}
7.8 范围查询(range)
/*** 查询价格大于等于10000的商品信息*/
@Test
public void rangeQuery() {try {// 构建查询条件SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(QueryBuilders.rangeQuery("price").gte(10000));// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();log.info(hits.getTotalHits().value + "");for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}/*** 查询距离现在 10 年间的商品信息* [年(y)、月(M)、星期(w)、天(d)、小时(h)、分钟(m)、秒(s)]* 例如:* now-1h 查询一小时内范围* now-1d 查询一天内时间范围* now-1y 查询最近一年内的时间范围*/
@Test
public void dateRangeQuery() {try {// 构建查询条件SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();// includeLower(是否包含下边界)、includeUpper(是否包含上边界)searchSourceBuilder.query(QueryBuilders.rangeQuery("createTime").gte("now-10y").includeLower(true).includeUpper(true));// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status())&& searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods userInfo = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(userInfo.toString());}}} catch (IOException e) {log.error("", e);}
}
7.9 布尔查询(bool)
bool 查询可以用来合并多个条件查询结果的布尔逻辑,它包含一下操作符:
- must:多个查询条件必须完全匹配,相当于关系型数据库中的 and。
- should:至少有一个查询条件匹配,相当于关系型数据库中的 or。
- must_not: 多个查询条件的相反匹配,相当于关系型数据库中的 not。
- filter:过滤满足条件的数据。
- range:条件筛选范围。
- gt:大于,相当于关系型数据库中的 >。
- gte:大于等于,相当于关系型数据库中的 >=。
- lt:小于,相当于关系型数据库中的 <。
- lte:小于等于,相当于关系型数据库中的 <=。
- range:条件筛选范围。
/*** boolQuery 查询* 案例:查询从2018-2022年间标题含 三星 的商品信息*/
@Test
public void boolQuery() {try {// 创建 Bool 查询构建器BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();// 构建查询条件boolQueryBuilder.must(QueryBuilders.matchQuery("title", "三星")).filter().add(QueryBuilders.rangeQuery("createTime").format("yyyy").gte("2018").lte("2022"));// 构建查询源构建器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(boolQueryBuilder);searchSourceBuilder.size(100);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods goods = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(goods.toString());}}} catch (IOException e) {log.error("", e);}
}
7.10 queryString查询
会对查询条件进行分词, 然后将分词后的查询条件和词条进行等值匹配,默认取并集(OR),可以指定单个字段也可多个查询字段
/*** queryStringQuery查询* 案例:查询出必须包含 华为手机 词语的商品信息*/
@Test
public void queryStringQuery() {try {// 创建 queryString 查询构建器QueryStringQueryBuilder queryStringQueryBuilder = QueryBuilders.queryStringQuery("华为手机").defaultOperator(Operator.AND);// 构建查询源构建器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(queryStringQueryBuilder);searchSourceBuilder.size(100);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status())&& searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods goods = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(goods.toString());}}} catch (IOException e) {log.error("", e);}
}
7.11 查询结果过滤
我们在查询数据的时候,返回的结果中,所有字段都给我们返回了,但是有时候我们并不需要那么多,所以可以对结果进行过滤处理。
/*** 过滤source获取部分字段内容* 案例:只获取 title、categoryName和price的数据*/
@Test
public void sourceFilter() {try {//查询条件(词条查询:对应ES query里的match)BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery().must(QueryBuilders.matchQuery("title", "金立")).must(QueryBuilders.matchQuery("categoryName", "手机")).filter(QueryBuilders.rangeQuery("price").gt(1000).lt(2000));// 构建查询源构建器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(boolQueryBuilder);// 如果查询的属性很少,那就使用includes,而excludes设置为空数组// 如果排序的属性很少,那就使用excludes,而includes设置为空数组String[] includes = {"title", "categoryName", "price"};String[] excludes = {};searchSourceBuilder.fetchSource(includes, excludes);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods goods = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 输出查询信息log.info(goods.toString());}}} catch (IOException e) {log.error("", e);}
}
7.12 高亮查询
/*** 高亮查询* 案例:把标题中为 三星手机 的词语高亮显示*/
@Test
public void highlightBuilder() {try {//查询条件(词条查询:对应ES query里的match)MatchQueryBuilder matchQueryBuilder = QueryBuilders.matchQuery("title", "三星手机");//设置高亮三要素 // field: 你的高亮字段// preTags: 前缀// postTags: 后缀HighlightBuilder highlightBuilder = new HighlightBuilder().field("title").preTags("<font color='red'>").postTags("</font>");// 构建查询源构建器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(matchQueryBuilder);searchSourceBuilder.highlighter(highlightBuilder);searchSourceBuilder.size(100);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);// 根据状态和数据条数验证是否返回了数据if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().getTotalHits().value > 0) {SearchHits hits = searchResponse.getHits();for (SearchHit hit : hits) {// 将 JSON 转换成对象Goods goods = JSON.parseObject(hit.getSourceAsString(), Goods.class);// 获取高亮的数据HighlightField highlightField = hit.getHighlightFields().get("title");System.out.println("高亮名称:" + highlightField.getFragments()[0].string());// 替换掉原来的数据Text[] fragments = highlightField.getFragments();if (fragments != null && fragments.length > 0) {StringBuilder title = new StringBuilder();for (Text fragment : fragments) {//System.out.println(fragment);title.append(fragment);}goods.setTitle(title.toString());}// 输出查询信息log.info(goods.toString());}}} catch (IOException e) {log.error("", e);}
}
7.13 聚合查询
我们平时在使用Elasticsearch时,更多会用到聚合操作,它类似SQL中的group by操作。ES的聚合查询一定是先查出结果,然后对结果使用聚合函数做处理,常用的操作有:avg:求平均、max:最大值、min:最小值、sum:求和等。
在ES中聚合分为指标聚合和分桶聚合:
- Metric 指标聚合:指标聚合对一个数据集求最大、最小、和、平均值等
- Bucket 分桶聚合:除了有上面的聚合函数外,还可以对查询出的数据进行分组group by,再在组上进行游标聚合。
7.13.1 Metric指标聚合分析
/*** 聚合查询* Metric 指标聚合分析* 案例:分别获取最贵的商品和获取最便宜的商品*/
@Test
public void metricQuery() {try {// 构建查询条件MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();// 创建查询源构造器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(matchAllQueryBuilder);// 获取最贵的商品AggregationBuilder maxPrice = AggregationBuilders.max("maxPrice").field("price");searchSourceBuilder.aggregation(maxPrice);// 获取最便宜的商品AggregationBuilder minPrice = AggregationBuilders.min("minPrice").field("price");searchSourceBuilder.aggregation(minPrice);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);Aggregations aggregations = searchResponse.getAggregations();ParsedMax max = aggregations.get("maxPrice");log.info("最贵的价格:" + max.getValue());ParsedMin min = aggregations.get("minPrice");log.info("最便宜的价格:" + min.getValue());} catch (IOException e) {log.error("", e);}
}/*** 聚合查询* Bucket 分桶聚合分析* 案例:根据品牌进行聚合查询*/
@Test
public void bucketQuery() {try {// 构建查询条件MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();// 创建查询源构造器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(matchAllQueryBuilder);// 根据商品分类进行分组查询TermsAggregationBuilder aggBrandName = AggregationBuilders.terms("brandNameName").field("brandName");searchSourceBuilder.aggregation(aggBrandName);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);Aggregations aggregations = searchResponse.getAggregations();ParsedStringTerms aggBrandName1 = aggregations.get("brandNameName");for (Terms.Bucket bucket : aggBrandName1.getBuckets()) {System.out.println(bucket.getKeyAsString() + "====" + bucket.getDocCount());}} catch (IOException e) {log.error("", e);}
}
7.13.2 Bucket分桶聚合分析
/*** 聚合查询* Bucket 分桶聚合分析* 案例:根据品牌进行聚合查询*/
@Test
public void bucketQuery() {try {// 构建查询条件MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();// 创建查询源构造器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(matchAllQueryBuilder);// 根据商品分类进行分组查询TermsAggregationBuilder aggBrandName = AggregationBuilders.terms("brandNameName").field("brandName");searchSourceBuilder.aggregation(aggBrandName);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);Aggregations aggregations = searchResponse.getAggregations();ParsedStringTerms aggBrandName1 = aggregations.get("brandNameName");for (Terms.Bucket bucket : aggBrandName1.getBuckets()) {System.out.println(bucket.getKeyAsString() + "====" + bucket.getDocCount());}} catch (IOException e) {log.error("", e);}
}/*** 子聚合聚合查询* Bucket 分桶聚合分析* 案例:根据商品分类进行分组查询,并且获取分类商品中的平均价格*/
@Test
public void subBucketQuery() {try {// 构建查询条件MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();// 创建查询源构造器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(matchAllQueryBuilder);// 根据商品分类进行分组查询,并且获取分类商品中的平均价格TermsAggregationBuilder subAggregation = AggregationBuilders.terms("brandNameName").field("brandName").subAggregation(AggregationBuilders.avg("avgPrice").field("price"));searchSourceBuilder.aggregation(subAggregation);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest,RequestOptions.DEFAULT);Aggregations aggregations = searchResponse.getAggregations();ParsedStringTerms aggBrandName1 = aggregations.get("brandNameName");for (Terms.Bucket bucket : aggBrandName1.getBuckets()) {// 获取聚合后的品牌的平均价格,注意返回值不是Aggregation对象,而是指定的ParsedAvg对象ParsedAvg avgPrice = bucket.getAggregations().get("avgPrice");System.out.println(bucket.getKeyAsString() + "====" + avgPrice.getValueAsString());}} catch (IOException e) {log.error("", e);}
}
7.13.3 综合聚合查询
/*** 综合聚合查询* 根据商品分类聚合,获取每个商品类的平均价格,并且在商品分类聚合之上子聚合每个品牌的平均价格*/
@Test
public void subSubAgg() throws IOException {// 构建查询条件MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();// 创建查询源构造器SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(matchAllQueryBuilder);// 注意这里聚合写的位置不要写错,很容易搞混,错一个括号就不对了TermsAggregationBuilder subAggregation = AggregationBuilders.terms("categoryNameAgg").field("categoryName").subAggregation(AggregationBuilders.avg("categoryNameAvgPrice").field("price")).subAggregation(AggregationBuilders.terms("brandNameAgg").field("brandName").subAggregation(AggregationBuilders.avg("brandNameAvgPrice").field("price")));searchSourceBuilder.aggregation(subAggregation);// 创建查询请求对象,将查询对象配置到其中SearchRequest searchRequest = new SearchRequest("goods");searchRequest.source(searchSourceBuilder);// 执行查询,然后处理响应结果SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);//获取总记录数System.out.println("totalHits = " + searchResponse.getHits().getTotalHits().value);// 获取聚合信息Aggregations aggregations = searchResponse.getAggregations();ParsedStringTerms categoryNameAgg = aggregations.get("categoryNameAgg");//获取值返回for (Terms.Bucket bucket : categoryNameAgg.getBuckets()) {// 获取聚合后的分类名称String categoryName = bucket.getKeyAsString();// 获取聚合命中的文档数量long docCount = bucket.getDocCount();// 获取聚合后的分类的平均价格,注意返回值不是Aggregation对象,而是指定的ParsedAvg对象ParsedAvg avgPrice = bucket.getAggregations().get("categoryNameAvgPrice");System.out.println(categoryName + "======平均价:" + avgPrice.getValue()+ "======数量:" + docCount);ParsedStringTerms brandNameAgg = bucket.getAggregations().get("brandNameAgg");for (Terms.Bucket brandeNameAggBucket : brandNameAgg.getBuckets()) {// 获取聚合后的品牌名称String brandName = brandeNameAggBucket.getKeyAsString();// 获取聚合后的品牌的平均价格,注意返回值不是Aggregation对象,而是指定的ParsedAvg对象ParsedAvg brandNameAvgPrice = brandeNameAggBucket.getAggregations().get("brandNameAvgPrice");System.out.println(" " + brandName + "======" + brandNameAvgPrice.getValue());}}
}
JAVA 折叠 复制 全屏