鸿蒙内核源码分析——(自旋锁篇)

本篇说清楚自旋锁

读本篇之前建议先读系列篇 进程/线程篇.

内核中哪些地方会用到自旋锁?看图:

概述

自旋锁顾名思义,是一把自动旋转的锁,这很像厕所里的锁,进入前标记是绿色可用的,进入格子间后,手一带,里面的锁转个圈,外面标记变成了红色表示在使用,外面的只能等待.这是形象的比喻,但实际也是如此.

在多CPU核环境中,由于使用相同的内存空间,存在对同一资源进行访问的情况,所以需要互斥访问机制来保证同一时刻只有一个核进行操作,自旋锁就是这样的一种机制。

  • 自旋锁是指当一个线程在获取锁时,如果锁已经被其它CPU中的线程获取,那么该线程将循环等待,并不断判断是否能够成功获取锁,直到其它CPU释放锁后,等锁CPU才会退出循环。

  • 自旋锁的设计理念是它仅会被持有非常短的时间,锁只能被一个任务持有,而且持有自旋锁的CPU是不可以进入睡眠模式的,因为其他的CPU在等待锁,为了防止死锁上下文交换也是不允许的,是禁止发生调度的.

  • 自旋锁与互斥锁比较类似,它们都是为了解决对共享资源的互斥使用问题。无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个持有者。但是两者在调度机制上略有不同,对于互斥锁,如果锁已经被占用,锁申请者会被阻塞;但是自旋锁不会引起调用者阻塞,会一直循环检测自旋锁是否已经被释放。

虽然都是共享资源竞争,但自旋锁强调的是CPU核间的竞争,而互斥量强调的是任务(包括同一CPU核)之间的竞争.

自旋锁长什么样?

    typedef struct Spinlock {//自旋锁结构体size_t      rawLock;//原始锁#if (LOSCFG_KERNEL_SMP_LOCKDEP == YES) // 死锁检测模块开关UINT32      cpuid; //持有锁的CPUVOID        *owner; //持有锁任务const CHAR  *name; //锁名称#endif} SPIN_LOCK_S;

结构体很简单,里面有个宏,用于死锁检测,默认情况下是关闭的.所以真正的被使用的变量只有rawLock一个.但C语言代码中找不到变量的变化过程,而是通过一段汇编代码来实现.看完本篇会明白也只能通过汇编代码来实现自旋锁.

自旋锁使用流程

自旋锁用于多CPU核的情况,解决的是CPU之间竞争资源的问题.使用流程很简单,三步走。

  • 创建自旋锁:使用LOS_SpinInit初始化自旋锁,或者使用SPIN_LOCK_INIT初始化静态内存的自旋锁。

  • 申请自旋锁:使用接口LOS_SpinLock LOS_SpinTrylock LOS_SpinLockSave申请指定的自旋锁,申请成功就继续往后执行锁保护的代码;申请失败在自旋锁申请中忙等,直到申请到自旋锁为止。

  • 释放自旋锁:使用LOS_SpinUnlock LOS_SpinUnlockRestore接口释放自旋锁。锁保护代码执行完毕后,释放对应的自旋锁,以便其他核申请自旋锁。

几个关键函数

自旋锁模块由内联函数实现,见于los_spinlock.h 代码不多,主要是三个函数.

ArchSpinLock(&lock->rawLock);
ArchSpinTrylock(&lock->rawLock)
ArchSpinUnlock(&lock->rawLock);

可以说掌握了它们就掌握了自旋锁,但这三个函数全由汇编实现.见于los_dispatch.S文件
因为系列篇已有两篇讲过汇编代码,所以很容易理解这三段代码.函数的参数由r0记录,即r0保存了lock->rawLock的地址,拿锁/释放锁是让lock->rawLock在0,1切换
下面逐一说明自旋锁的汇编代码.

ArchSpinLock 汇编代码

    FUNCTION(ArchSpinLock)  @死守,非要拿到锁mov     r1, #1      @r1=11:                      @循环的作用,因SEV是广播事件.不一定lock->rawLock的值已经改变了ldrex   r2, [r0]    @r0 = &lock->rawLock, 即 r2 = lock->rawLockcmp     r2, #0      @r2和0比较wfene               @不相等时,说明资源被占用,CPU核进入睡眠状态strexeq r2, r1, [r0]@此时CPU被重新唤醒,尝试令lock->rawLock=1,成功写入则r2=0cmpeq   r2, #0      @再来比较r2是否等于0,如果相等则获取到了锁bne     1b          @如果不相等,继续进入循环dmb                 @用DMB指令来隔离,以保证缓冲中的数据已经落实到RAM中bx      lr          @此时是一定拿到锁了,跳回调用ArchSpinLock函数

看懂了这段汇编代码就理解了自旋锁实现的真正机制,为什么一定要用汇编来实现. 因为CPU宁愿睡眠也非拿要到锁不可的, 注意这里可不是让线程睡眠,而是让CPU进入睡眠状态,能让CPU进入睡眠的只能通过汇编实现.C语言根本就写不出让CPU真正睡眠的代码.

ArchSpinTrylock 汇编代码

如果不看下面这段汇编代码,你根本不可能知道 ArchSpinTrylock 和 ArchSpinLock的真正区别是什么.

    FUNCTION(ArchSpinTrylock)   @尝试拿锁,拿不到就撤mov     r1, #1          @r1=1mov     r2, r0          @r2 = r0       ldrex   r0, [r2]        @r2 = &lock->rawLock, 即 r0 = lock->rawLockcmp     r0, #0          @r0和0比较strexeq r0, r1, [r2]    @尝试令lock->rawLock=1,成功写入则r0=0,否则 r0 =1dmb                     @数据存储隔离,以保证缓冲中的数据已经落实到RAM中bx      lr              @跳回调用ArchSpinLock函数

比较两段汇编代码可知,ArchSpinTrylock即没有循环也不会让CPU进入睡眠,直接返回了,而ArchSpinLock会睡了醒, 醒了睡,一直守到丈夫( lock->rawLock = 0的广播事件发生)回来才肯罢休. 笔者代码注释到这里那真是心潮澎湃,心碎了老一地, 真想给 ArchSpinLock 立一个贞节牌坊!

ArchSpinUnlock 汇编代码

    FUNCTION(ArchSpinUnlock)    @释放锁mov     r1, #0          @r1=0               dmb                     @数据存储隔离,以保证缓冲中的数据已经落实到RAM中str     r1, [r0]        @令lock->rawLock = 0dsb                     @数据同步隔离sev                     @给各CPU广播事件,唤醒沉睡的CPU们bx      lr              @跳回调用ArchSpinLock函数

代码中涉及到几个不常用的汇编指令,一一说明:

汇编指令之 WFI / WFE / SEV

WFI(Wait for interrupt):等待中断到来指令. WFI一般用于cpuidle,WFI 指令是在处理器发生中断或类似异常之前不需要做任何事情。

在鸿蒙源码分析系列篇(总目录)线程篇中已说过,每个CPU都有自己的idle任务,CPU没事干的时候就待在里面,就一个死循环守着WFI指令,有中断来了就触发CPU起床干活. 中断分硬中断和软中断,系统调用就是通过软中断实现的,而设备类的就属于硬中断,都能触发CPU干活. 具体看下CPU空闲的时候在干嘛,代码超级简单:

LITE_OS_SEC_TEXT WEAK VOID OsIdleTask(VOID) //CPU没事干的时候待在这里
{while (1) {//只有一个死循环Wfi();//WFI指令:arm core 立即进入low-power standby state,等待中断,进入休眠模式。}
}

WFE(Wait for event):等待事件的到来指令WFE 指令是在SEV指令生成事件之前不需要执行任何操作,所以用WFE的地方,后续一定会对应一个SEV的指令去唤醒它.
WFE的一个典型使用场景,是用在自旋锁中,spinlock的功能,是在不同CPU core之间,保护共享资源。使用WFE的流程是:

  • 开始之初资源空闲
  • CPU核1 访问资源,持有锁,获得资源
  • CPU核2 访问资源,此时资源不空闲,执行WFE指令,让core进入low-power state(睡眠)
  • CPU核1 释放资源,释放锁,释放资源,同时执行SEV指令,唤醒CPU核2
  • CPU核2 获得资源

另外说一下 以往的自旋锁,在获得不到资源时,让CPU核进入死循环,而通过插入WFE指令,则大大节省功耗.

SEV(send event):发送事件指令,SEV是一条广播指令,它会将事件发送到多处理器系统中的所有处理器,以唤醒沉睡的CPU.

SEVWFE的实现很像设计模式的观察者模式.

汇编指令之 LDREX / STREX

LDREX用来读取内存中的值,并标记对该段内存的独占访问:

LDREX Rx, [Ry]
上面的指令意味着,读取寄存器Ry指向的4字节内存值,将其保存到Rx寄存器中,同时标记对Ry指向内存区域的独占访问。

如果执行LDREX指令的时候发现已经被标记为独占访问了,并不会对指令的执行产生影响。

而STREX在更新内存数值时,会检查该段内存是否已经被标记为独占访问,并以此来决定是否更新内存中的值:

STREX Rx, Ry, [Rz]
如果执行这条指令的时候发现已经被标记为独占访问了,则将寄存器Ry中的值更新到寄存器Rz指向的内存,并将寄存器Rx设置成0。指令执行成功后,会将独占访问标记位清除。

而如果执行这条指令的时候发现没有设置独占标记,则不会更新内存,且将寄存器Rx的值设置成1。

一旦某条STREX指令执行成功后,以后再对同一段内存尝试使用STREX指令更新的时候,会发现独占标记已经被清空了,就不能再更新了,从而实现独占访问的机制。

编程实例

本实例实现如下流程。

  • 任务Example_TaskEntry初始化自旋锁,创建两个任务Example_SpinTask1、Example_SpinTask2,分别运行于两个核。
  • Example_SpinTask1、Example_SpinTask2中均执行申请自旋锁的操作,同时为了模拟实际操作,在持有自旋锁后进行延迟操作,最后释放自旋锁。
  • 300Tick后任务Example_TaskEntry被调度运行,删除任务Example_SpinTask1和Example_SpinTask2。
#include "los_spinlock.h"
#include "los_task.h"/* 自旋锁句柄id */
SPIN_LOCK_S g_testSpinlock;
/* 任务ID */
UINT32 g_testTaskId01;
UINT32 g_testTaskId02;VOID Example_SpinTask1(VOID)
{UINT32 i;UINTPTR intSave;/* 申请自旋锁 */dprintf("task1 try to get spinlock\n");LOS_SpinLockSave(&g_testSpinlock, &intSave);dprintf("task1 got spinlock\n");for(i = 0; i < 5000; i++) {asm volatile("nop");}/* 释放自旋锁 */dprintf("task1 release spinlock\n");LOS_SpinUnlockRestore(&g_testSpinlock, intSave);return;
}VOID Example_SpinTask2(VOID)
{UINT32 i;UINTPTR intSave;/* 申请自旋锁 */dprintf("task2 try to get spinlock\n");LOS_SpinLockSave(&g_testSpinlock, &intSave);dprintf("task2 got spinlock\n");for(i = 0; i < 5000; i++) {asm volatile("nop");}/* 释放自旋锁 */dprintf("task2 release spinlock\n");LOS_SpinUnlockRestore(&g_testSpinlock, intSave);return;
}UINT32 Example_TaskEntry(VOID)
{UINT32 ret;TSK_INIT_PARAM_S stTask1;TSK_INIT_PARAM_S stTask2;/* 初始化自旋锁 */LOS_SpinInit(&g_testSpinlock);/* 创建任务1 */memset(&stTask1, 0, sizeof(TSK_INIT_PARAM_S));stTask1.pfnTaskEntry  = (TSK_ENTRY_FUNC)Example_SpinTask1;stTask1.pcName        = "SpinTsk1";stTask1.uwStackSize   = LOSCFG_TASK_MIN_STACK_SIZE;stTask1.usTaskPrio    = 5;
#ifdef LOSCFG_KERNEL_SMP/* 绑定任务到CPU0运行 */stTask1.usCpuAffiMask = CPUID_TO_AFFI_MASK(0);
#endifret = LOS_TaskCreate(&g_testTaskId01, &stTask1);if(ret != LOS_OK) {dprintf("task1 create failed .\n");return LOS_NOK;}/* 创建任务2 */memset(&stTask2, 0, sizeof(TSK_INIT_PARAM_S));stTask2.pfnTaskEntry = (TSK_ENTRY_FUNC)Example_SpinTask2;stTask2.pcName       = "SpinTsk2";stTask2.uwStackSize  = LOSCFG_TASK_MIN_STACK_SIZE;stTask2.usTaskPrio   = 5;
#ifdef LOSCFG_KERNEL_SMP/* 绑定任务到CPU1运行 */stTask1.usCpuAffiMask = CPUID_TO_AFFI_MASK(1);
#endifret = LOS_TaskCreate(&g_testTaskId02, &stTask2);if(ret != LOS_OK) {dprintf("task2 create failed .\n");return LOS_NOK;}/* 任务休眠300Ticks */LOS_TaskDelay(300);/* 删除任务1 */ret = LOS_TaskDelete(g_testTaskId01);if(ret != LOS_OK) {dprintf("task1 delete failed .\n");return LOS_NOK;}/* 删除任务2 */ret = LOS_TaskDelete(g_testTaskId02);if(ret != LOS_OK) {dprintf("task2 delete failed .\n");return LOS_NOK;}return LOS_OK;
}

运行结果

task2 try to get spinlock
task2 got spinlock
task1 try to get spinlock
task2 release spinlock
task1 got spinlock
task1 release spinlock

总结

  • 自旋锁用于解决CPU核间竞争资源的问题
  • 因为自旋锁会让CPU陷入睡眠状态,所以锁的代码不能太长,否则容易导致意外出现,也影响性能.
  • 必须由汇编代码实现,因为C语言写不出让CPU进入真正睡眠,核间竞争的代码.

经常有很多小伙伴抱怨说:不知道学习鸿蒙开发哪些技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?

为了能够帮助到大家能够有规划的学习,这里特别整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线,包含了鸿蒙开发必掌握的核心知识要点,内容有(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、WebGL、元服务、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、OpenHarmony驱动开发、系统定制移植等等)鸿蒙(HarmonyOS NEXT)技术知识点。

在这里插入图片描述

《鸿蒙 (Harmony OS)开发学习手册》(共计892页)

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

开发基础知识:

1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……

在这里插入图片描述

基于ArkTS 开发

1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……

在这里插入图片描述

鸿蒙开发面试真题(含参考答案)

在这里插入图片描述

OpenHarmony 开发环境搭建
图片

《OpenHarmony源码解析》

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……
  • 系统架构分析
  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

图片

OpenHarmony 设备开发学习手册

图片

写在最后

如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙

  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请移步前往在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/404286.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Github 2024-08-19 开源项目周报Top15

根据Github Trendings的统计,本周(2024-08-19统计)共有15个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目7JavaScript项目3TypeScript项目3Dart项目2HTML项目1PowerShell项目1Clojure项目1C++项目1Rust项目1Bootstrap 5: Web上开发响应式、…

嵌入式软件--模电基础 DAY 2

强电和弱电&#xff0c;简单一点是以电死人为标准的&#xff0c;交流电36伏特以下&#xff0c;直流电24V以下&#xff0c;为安全电压&#xff0c;是为弱电&#xff0c;反则强电。 市电进入家庭&#xff0c;连接你的电脑&#xff0c;220V的电压为什么没有让你感到危险&#xff…

YOLO知识点总结:

分类&#xff1a; 即是将图像结构化为某一类别的信息&#xff0c;用事先确定好的类别(category)或实例ID来描述图片。这一任务是最简单、最基础的图像理解任务&#xff0c;也是深度学习模型最先取得突破和实现大规模应用的任务。其中&#xff0c;ImageNet是最权威的评测集&…

【区块链+金融服务】基于区块链的一站式绿色金融开放平台 | FISCO BCOS应用案例

科技的进步为绿色金融发展提供了新的机遇&#xff0c;但银行、企业、第三方金融机构等在进行绿色金融业务操作过程中&#xff0c; 存在着相关系统和服务平台建设成本高、迭代难度大、数据交互弱、适配难等痛点。 基于此&#xff0c;中碳绿信采用国产开源联盟链底层平台 FISCO …

【Android 远程数据库操作】

按正常情况下&#xff0c;前端不应该直接进行远程数据库操作&#xff0c;这不是一个明智的方式&#xff0c;应该是后端提供对应接口来处理&#xff0c;奈何公司各方面原因需要前端这样做。 对此&#xff0c;我对远程数据库操作做了总结&#xff0c;便于自己复盘&#xff0c;同…

【Qt】常用控件QCheckBox

常用控件QCheckBox QCheckBox表示复选按钮&#xff0c;可以允许选中多个。 QCheckBox继承自QAbstractButton 例子&#xff1a;获取复选按钮的取值 使用Qt Designer先大体进行设计 代码实现&#xff1a; #include "widget.h" #include "ui_widget.h"Widge…

【网络】套接字(socket)编程——TCP版

接着上一篇文章&#xff1a;http://t.csdnimg.cn/GZDlI 在上一篇文章中&#xff0c;我们实现的是UDP协议的&#xff0c;今天我们就要来实现一下TCP版本的 接下来接下来实现一批基于 TCP 协议的网络程序&#xff0c;本节只介绍基于IPv4的socket网络编程 基于 TCP 的网络编程开…

【leetcode详解】T3137(思路详解 代码优化感悟)

思路详解 要解决这个问题&#xff0c;我们的大致思路是这样&#xff1a;找到长度为k的字符串 (记为stringA) &#xff0c;统计重复次数最多的那一个&#xff0c;则最终对应的k周期字符串就是 [stringA * n] 的形式( n word.length() / k&#xff09; 要实现多对象的计数&…

iOS 18.1 Beta 2评测:新变化与体验升级

苹果公司近日向开发者推送了iOS 18.1 Beta 2更新&#xff0c;这一版本基于beta1版本进行多个方面优化和改进&#xff0c;为用户带来了更加流畅和个性化的使用体验。作为一位热衷于体验新系统的用户&#xff0c;小编也是第一时间升级了Beta 2版本&#xff0c;并对其进行了全面的…

51 无显式主键时 mysql 增加的 DB_ROW_ID

前言 这里主要是 探讨, 在我们创建了一个 无主键的数据表, 然后 mysql 会为我们增加的这一个 DB_ROW_ID 的相关 新建一个无主键字段的数据表如下 CREATE TABLE implicit_id_table (username varchar(16) DEFAULT NULL,age int(11) DEFAULT NULL ) ENGINEInnoDB DEFAULT CH…

Docker 部署loki日志 用于微服务

因为每次去查看日志都去登录服务器去查询相关日志文件&#xff0c;还有不同的微服务&#xff0c;不同日期的文件夹&#xff0c;超级麻烦&#xff0c;因为之前用过ELK&#xff0c;原本打算用ELK&#xff0c;在做技术调研的时候发现了一个轻量级的日志系统Loki&#xff0c;果断采…

如何一键删除iPhone相册所有照片

拍照已成为我们记录日常生活的常态。但是&#xff0c;大量照片便会积累在设备上&#xff0c;这不仅占用了大量存储空间&#xff0c;而且随着时间的推移&#xff0c;管理这些照片也变得越来越困难。如果你决定清理旧照片&#xff0c;或者出于隐私考虑需要删除所有照片&#xff0…

【数据结构】链式结构实现:二叉树

二叉树 一.快速创建一颗二叉树二.二叉树的遍历1.前序、中序、后序遍历&#xff08;深度优先遍历DFS&#xff09;2.层序遍历&#xff08;广度优先遍历BFS&#xff09; 三.二叉树节点的个数四.二叉树叶子节点的个数五.二叉树的高度六.二叉树第k层节点个数七.二叉树查找值为x的节点…

什么是机器人快换盘?

机器人快换盘&#xff0c;行业内也称作工具快换盘、换枪盘、快换工具盘、快速更换器、快换器、 快换夹具、治具快换等。是末端执行器快速更换装置&#xff08;End-Of-Arm Tooling&#xff0c;简称EOAT&#xff09;&#xff0c;是工业自动化领域中用于机器人手臂上的一种重要设备…

MiniCPM-V: A GPT-4V Level MLLM on Your Phone论文阅读

大模型的趋势&#xff1a;模型性能越来越好&#xff0c;模型参数变小&#xff0c;端边设备计算能力变强。 MiniCPM-V优点 结果好、OCR能力突出、多分辨率、多语言、易于部署 模型结构 图片encoder适用vit。输入整体以及切片。切片使用自适应算法&#xff0c;通过计算分数&am…

人机环境系统智能已经超越了传统的空间智能和物理世界的概念

人机环境系统智能已经超越了传统的空间智能和物理世界的概念&#xff0c;进入了更为复杂的层次。在人机环境系统中&#xff0c;智能不仅涉及对物理世界的感知和理解&#xff0c;还包括对人类语言、情感、意图等的理解和生成。人工智能技术的应用&#xff0c;如自然语言处理、机…

C++静态数组的用法

每日诗词&#xff1a; 疏影横斜水清浅&#xff0c;暗香浮动月黄昏。 ——《山园小梅其一》林逋 目录 数组的基础操作&#xff1a; 数组元素的增加&#xff1a; 演示&#xff1a; 数组元素的删除&#xff1a; 演示&#xff1a; 数组元素的访问和修改&#xff1a; 演示&am…

WLAN射频调优

射频调优的基本原则 信道优化的基本原则 2.4G射频在非高密部署场景中推荐采用1、6、11这种3个不重叠的信道进行规划&#xff0c;同理也可以选用2、7、12或3、8、13的组合方式&#xff1b;在高密部署场景中则推荐采用1、5、9、13共4个信道组合进行规划。5G射频推荐采用36、40、…

HQChart使用教程101-创建内置键盘精灵

HQChart使用教程101-创建内置键盘精灵 键盘精灵步骤1. 创建键盘精灵实例2. 设置事件回调3. 初始化键盘精灵4. 设置码表数据5. 监听"keydown","mousedown" 交流QQ群HQChart代码地址键盘精灵源码 完整实例 键盘精灵 键盘精灵是一种便捷操作软件的功能工具&a…

【人工智能】Python融合机器学习、深度学习和微服务的创新之路

1. &#x1f680; 引言1.1 &#x1f680; 人工智能的现状与发展趋势1.2 &#x1f4dc; 机器学习、深度学习和神经网络的基本概念1.3 &#x1f3c6; 微服务架构在人工智能中的作用 2. &#x1f50d; 机器学习的演变与创新2.1 &#x1f31f; 机器学习的历史回顾2.2 &#x1f9e0;…