I/Q 旋转 Rotation
在许多多通道射频系统中,如 AD-FMCOMMS5,甚至在 AD-FMCOMMS2、AD-FMCOMMS3 上,都需要测量或校正两个复数 (I/Q) RF 信号之间的相位差。
从纯粹的数学描述来看,单个正弦波没有相位,一个相位只能在两个不同的正弦波之间发展。增加复杂性的是,我们没有一个单一的真实信号(正弦波),我们有一个复信号(I + Qi) = cos(omega) + sin(omega){i} = e^{{i}{omega}}。将此信号旋转 180° 或 pi 弧度,变为 e^{{i}{pi}} + 1,这就是我们希望能够找到并最终纠正的结果。如果您不确定为什么数学会以这种方式工作,请查看此解释。
在上一节中,我们讨论了 I/Q 校正 - 相对于固定 I 的相移 Q,并使 I 和 Q 的幅度相等。在AD9361/AD9364中,这是在器件内部自动完成的,称为“正交校正”。
我们将检查的第一阶段是测量相位差。
确定相位差
在经典意义上 - 测量不同信号的相位同步,只有相位是重要的。对振幅没有限制。因此,耦合系统的相位同步被定义为它们相位之间关系的出现,而幅度可以保持不相关。下面的许多技术将测量相位/频率/幅度差异,而其他技术将仅测量相位。根据应用和信号的不同,不同的方案可能会提供更好的结果。
尽管 Simulink 可能有一个模块可以直接测量两个复杂输入信号之间的相位差,但大多数其他环境都没有,我们需要更好地理解如何做到这一点。
测量两个射频信号之间相位差的确切方法取决于信号和相关应用:
▲信号中是否存在噪声,噪声是否相关,或者两者中是否存在随机高斯噪声?
▲信号是什么样子的?它是一种宽带信号(如QPSK、QAM、LTE等),还是单音、恒频信号?信号的频率是否在变化(如啁啾声?
▲两个信号的幅度是否接近相同?还是它们非常不同?
▲应用程序是否需要整个帧/数据集的平均相位滞后,或者是否需要跟踪相位在一段时间内的变化情况?
====
■过零 - 虽然这可以单独使用 I/Q 来完成,但查看 2 个不同的 I 和 2 个不同的 Q 信号,然后对差值求平均值/合并,这需要大量的计算。如果信号之间存在少量的直流偏移或幅度差异,这也会出现问题。下面的其他选项没有这些相同的缺点。
■互相关 :这是在 iio 示波器应用程序中实现的,通过使用 David E. Narváez 关于他的论文项目的帖子和他的 Github 存储库中的代码。它衡量两个序列(在本例中为真实信号或复数信号)的相似性(相位和幅度),作为一个序列相对于另一个序列的滞后函数。这样做的缺点是,它的准确性是基于相对于被分析信号的采样时间。在这种情况下,将同时查看振幅和相位/频率。
■单点分析:这使用上图,并查看 2 点之间的相位。由于我们对时间点并不真正感兴趣(因为这不是复杂调制的工作原理),因此这并不适用,也未实现。以下方法处理具有多个捕获样本的事物,并被使用,但主要基于此(公元前 3 世纪亚历山大的欧几里得制定的余弦定律)。唯一的问题是,余弦定律总是提供内角或钝角,而不是反射角,这可能是我们感兴趣的那个。
■内积 - 虽然这更适合纯正弦波,但它可以用于任意信号,但你得到的是两个向量(包括所有噪声)之间的角度,与振幅无关。这使用上述单点分析,并在整个采样数据中使用它。
其中
表示复共轭。
■ 频域:这适用于由恒定频率主导的信号。在这里,您可以将信号转换为频域(使用 fftw)。然后,你会找到与你关心的频率相对应的箱,并得到两个信号之间的角度。例如,如果我们知道第 18 个 bin 是感兴趣的频率,那么它就是:
。您可以使用余弦定律在向量方法中将其重写为(使用点积,因此使用复数共轭的乘法):
当您想使用 atan 与 acos 时,取决于 – 如果角度接近 90º,请使用 acos(90º 的棕褐色为 ∞)。缺点是 cos/acos 确实具有对称性 - 无法分辨 45º 和 -45º,或 90º 和 -90º 之间的区别,因此可能需要对实数/虚数符号进行一些额外的测试。如果角度更接近 0º,则使用 atan(atan 在 0º 处的分辨率高于 acos,因此它将提供更准确的数字)。还必须注意确保我们在必要时测量反射角。这都是在 iio 示波器应用程序中实现的,只需为频率法选择 2 个复数输入,不同 bin(标记)的相位差就会显示出来。
■ 希尔伯特变换。这是可以做到的,但我还没有做到
大小 Magnitude
了解我们试图解决什么样的问题 – 理解相位角和时间滞后/超前之间的关系是件好事。
psi{°} = 360{°} * 欧米茄 * {Delta}t 或 {Delta}t = {psi{°}} / {360{°} * 欧米茄}
因此,对于 1MHz 基带正弦波,即偏离 0.5°,即
{Delta}t = {0.5{°}} / {360{°} ~ * ~ 1 * 10^6Hz} = 1.389 * 10^{-9} 秒 = 1.389ns。像所有电磁波一样,无线电波以光速(0.299792458米/纳秒)传播。在本例中,0.5°,意味着我们可能偏离任何相对距离测量值41.64厘米(如果这是您正在做的)。
这就是为什么我们需要确保我们不考虑基带的原因。
对于我们调制到2.4GHz(2.401MHz波)的1MHz基带正弦波,它是
{Delta}t = {0.5{°}} / {360{°} ~ * ~ 2.401 * 10^9Hz} = 5.784626775880420195288999953723 * 10^{-13} 秒 = 0.5784ps。这变成了 ~0.173 毫米的相对距离测量值。
毋庸置疑 - 我们希望尽可能精确,并确保我们引用的是空气/射频接口,而不是基带信号。
旋转 I/Q Rotating
当单个连续波 (CW) 射频音调与基带混合时,它会产生两个信号(同相和正交),它们应该以相同的幅度彼此正交。在不失去通用性的情况下,我们对幅度和相位进行归一化,然后这两个信号可以表示为:
如上所述,我们希望围绕同一点旋转这些信号,这与提供恒定相移相同。
其中 Omega 是音调的基带频率,psi 是所需的相移,这将导致围绕原点的固定旋转(在星座图中,或 I 与 Q 图)。
我们可以使用三角和/差恒等式将其重写为:
并替换我们原始的未校正值,(并交换 Q 素数的顺序,这样我们就可以更容易地看到矩阵…
将其转换为 2 x 4 矩阵乘法非常容易。
虽然系数与调整 Q 相对于 I 有很大不同,但可以使用相同的硬件(2 x 2 乘法器)。
这很好,但是由于我们正在处理FPGA内部的定点数学运算,因此我们需要小心溢出。如果我们确定要旋转某物,Ψ 为 45°(或 pi/4 弧度),因为 cos(pi/4) = sin(pi/4) = 1/sqrt{2},
如果您只是在研究连续音调,那就没问题了。但是,由于简单的CW音调并不能真正代表像QPSK这样的复杂(I/Q)无线电信号,因此对于AD9361,I/Q可能接近分辨率的最大值,即12位或1.11位(1个符号位,11个幅度位)。例如:如果 I 和 Q 都位于 +1638(约为满量程的 80%),则校正后的 I’ 和 Q’ 的结果为 I’ = 0 和 Q’ = 2317。Q’ 将溢出 1.11 位表示。
有两种解决方案:
⚪ 使数据路径更宽(这是ADI设计中所做的,我们允许16位结果)。这会产生改变设备规模的副作用。结果不再只是 12 位,而是可能高出半个位。(如上所述,我们可以将比例尺改变 sqrt{2} 或 1.41 的因子,这可能会增加近 1/2 的量级)。
⚪ 按比例缩小。虽然减小振幅(这可能会抛弃现有的分辨率)始终是一个问题,但这确实有一个好处,即不会改变 ±1 的刻度(无论旋转如何,满量程始终相同)。
要缩放,只需除以收益,.取绝对值很重要,以确保
(否则会在 +135 度(+3/4π 弧度)或 +315 (-45) 度(-π/4 弧度)时发生)。这意味着:
这使得矩阵:
以上可以直接使用,具体取决于您的数学库可用的函数类型(sin、cos、tan)以及您允许的旋转量(以上适用于 ±180 度)。您可以根据其他 trig 函数进行重写,但必须注意确保分母永远不会接近零。