【三维重建】三角网格中轴骨架线提取

三维网格中轴线提取

  • 方法介绍
  • 实现提取

三维网格中轴线提取是计算机图形学和三维建模领域中的一个重要技术,它对于理解三维形状的拓扑结构和几何特性具有重要意义。

方法介绍

以下是几种常见的三维网格中轴线提取方法:

  1. 基于距离变换的方法
    基本原理:首先计算三维网格中每个点到网格边界的距离,形成距离场。然后,根据距离场的分布,通过细化算法提取中轴线。这种方法的核心在于距离变换和细化操作的结合。
    步骤:
    对三维网格进行距离变换,计算每个点到最近边界的距离。
    对距离变换结果进行排序,优先处理距离较小的点。
    通过细化算法逐步剥离外层点,直至提取出中轴线。
  2. 基于中轴球的方法
    基本原理:为每个网格端点计算一个中轴球,中轴球的中心即为中轴点。通过计算所有网格端点的中轴球,最终生成中轴网格。
    步骤:
    估计网格上所有点的法向,以模拟平滑表面。
    将模型分割成体素,每个体素具有特定尺寸。
    计算每个网格端点的中轴球,包括中轴点和中轴半径。
    通过所有中轴点生成中轴网格。
  3. 基于局部曲面拟合的方法
    应用场景:特别适用于处理点云数据,如三维激光扫描数据。
    步骤:
    对原始点云数据进行预处理,包括配准和去噪。
    对点云进行横断面切片处理,得到多个切片点云。
    对每个切片点云进行局部曲面拟合,提取切片中心。
    将所有切片中心拟合得到整体的中轴线。
  4. 基于拓扑收缩的方法
    基本原理:通过定义一个收缩力函数,控制三维网格内表面的收缩过程,直至收缩成一维的中轴线。
    挑战:如何定义收缩力函数以平衡收缩和吸引约束,同时保留骨架线的拓扑性和中间轴的中心位置。
  5. 基于骨架提取的算法
    如Medial Axis Transform (MAT):这类算法通常涉及对三维网格进行骨架化处理,通过逐步剥离外层网格元素,最终得到中轴线或骨架结构。

实现提取

输入:半圆环网格

在这里插入图片描述

std::vector<Point> m_points;
std::vector<std::vector<int>> m_faces;
std::unordered_map<int, std::vector<int>> m_adjacency;
std::unordered_set<int> m_boundaryPoints;
std::unordered_set<int> m_skeletonPoints;
std::unordered_set<Edge, EdgeHash> m_skeletonEdges;void buildAdjacencyList() {for (const auto& face : m_faces) {for (int i = 0; i < 3; ++i) {int v1 = face[i];int v2 = face[(i + 1) % 3];m_adjacency[v1].push_back(v2);m_adjacency[v2].push_back(v1);}}
}void findBoundaryPoints() {std::unordered_set<Edge, EdgeHash> edges;for (const auto& face : m_faces) {for (int i = 0; i < 3; ++i) {Edge e(face[i], face[(i + 1) % 3]);if (edges.find(e) != edges.end()) {edges.erase(e);}else {edges.insert(e);}}}for (const auto& e : edges) {m_boundaryPoints.insert(e.v1);m_boundaryPoints.insert(e.v2);}
}
void grassfirePropagation() {// Distance initialization and boundary point queuestd::vector<float> distanceFromBoundary(m_points.size(), std::numeric_limits<float>::max());std::queue<int> queue;// Initialize boundary pointsfor (int idx : m_boundaryPoints) {distanceFromBoundary[idx] = 0;queue.push(idx);}// Distance update using BFSwhile (!queue.empty()) {int current = queue.front();queue.pop();for (int neighborIdx : m_adjacency[current]) {float newDistance = distanceFromBoundary[current] + distance(m_points[current], m_points[neighborIdx]);if (newDistance < distanceFromBoundary[neighborIdx]) {distanceFromBoundary[neighborIdx] = newDistance;queue.push(neighborIdx);}}}// Find local maxima (skeleton points)for (int i = 0; i < m_points.size(); ++i) {if (m_boundaryPoints.count(i) > 0) continue;  // Skip boundary pointsbool isLocalMaximum = true;for (int neighborIdx : m_adjacency[i]) {if (distanceFromBoundary[neighborIdx] > distanceFromBoundary[i]) {isLocalMaximum = false;break;}}if (isLocalMaximum) {m_skeletonPoints.insert(i);}}
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/413309.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据计算-SQL优化手段(CBO)-以Flink为例

文章目录 背景理论知识示例结果展示结果解释 背景 大数据计算中&#xff0c;SQL生成的执行计划第一轮会经过固定规则的优化&#xff0c;第二轮会根据原计划&#xff0c;生成多条结合成本的的执行计划&#xff0c;根据cost 进行排序&#xff0c;选出最优的执行计划。 理论知识…

【大数据算法】时间亚线性算法之:时间亚线性判定算法概述。

时间亚线性判定算法概述 1、引言2、空间亚线性算法2.1 定义2.2 实现方式2.3 应用场景2.3.1 大数据分析2.3.2 流数据处理2.3.3 近似计算2.3.4 稀疏数据操作 2.4 代码示例 3、总结 1、引言 小屌丝&#xff1a;鱼哥&#xff0c;最近看新闻没啊&#xff1f; 小鱼&#xff1a;我天天…

Upload-labs靶场通过攻略

pass-01 1.写一个一句话木马 2.上传php文件 当我们上传php文件时 提示文件类型不正确 3.修改php后缀 通过修改php后缀为jpg 抓包再次修改成php文件 4.查看是否上传成功 页面显示图片 表示上传成功 pass-02 1.上传一个php文件 页面显示文件类型不正确 2.抓包修改 可以看…

【化学方程式配平 / 3】

题目 代码 #include <bits/stdc.h> using namespace std; const double eps 1e-8; unordered_map<string, int> e; int eidx, midx; //eidx 元素数&#xff0c; midx 物质数 double matrix[45][45]; int q; bool check_alpha(char c) {if(c > a && c …

Android APK打包脚本

build.gradle版本 同目录创建config.gradle文件写入需要的信息入 config.gradle文件内容 ext { /*** 自定义APP运行环境* dev: 开发* test: 测试* pro: 生产*/ env "pro" /*** 动态参数配置&#xff0c;根据自己需要添加参数* APP_ID: 包名* VERSION_CODE: 版本号…

【TDesign】如何修改CSS变量

Tdesign的组件想通过style定义样式没效果, 可以通过组件api文档修改, 组件提供了下列 CSS 变量&#xff0c;可用于自定义样式。 比如Cell, https://tdesign.tencent.com/miniprogram/components/cell?tabapi 提供了&#xff1a; –td-cell-left-icon-color 图标颜色 –td-cell…

yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制

简介 在计算机视觉和深度学习项目中&#xff0c;数据增强是一种常用的技术&#xff0c;通过对原始图像进行多种变换&#xff0c;可以增加数据集的多样性&#xff0c;从而提高模型的泛化能力。本文将介绍如何使用 Python 和 OpenCV 实现图像的亮度增强&#xff0c;并将增强后的…

Golang | Leetcode Golang题解之第383题赎金信

题目&#xff1a; 题解&#xff1a; func canConstruct(ransomNote, magazine string) bool {if len(ransomNote) > len(magazine) {return false}cnt : [26]int{}for _, ch : range magazine {cnt[ch-a]}for _, ch : range ransomNote {cnt[ch-a]--if cnt[ch-a] < 0 {r…

Vue(八) localStorage、组件的自定义事件、Todo案例修改

文章目录 一、浏览器本地存储1. 相关API2. Todo案例中的应用 二、组件的自定义事件1. 回顾props传值方式2. 绑定自定义事件&#xff08;1&#xff09;方式一&#xff1a;v-on或&#xff08;2&#xff09;方式二&#xff1a; ref 3. 解绑自定义事件4. 注意点总结 三、Todo案例采…

算法复盘——LeetCode hot100:哈希

文章目录 哈希表哈希表的基本概念哈希表的使用1. 插入操作2. 查找操作3. 删除操作 哈希表的优点和缺点1.两数之和复盘 242.有效的字母异位词复盘 49.字母异位词分组复盘 128. 最长连续序列复盘HashSet 哈希表 先来搞清楚什么是哈希表吧~ 概念不清楚方法不清楚怎么做题捏 哈希表…

c++习题28-计算2的N次方

目录 一&#xff0c;题目 二&#xff0c;思路 三&#xff0c;代码 一&#xff0c;题目 描述 任意给定一个正整数N(N<100)&#xff0c;计算2的n次方的值。 输入描述 输入一个正整数N。 输出描述 输出2的N次方的值。 用例输入 1 5 用例输出 1 32 二&#xff0…

【王树森】Transformer模型(2/2): 从Attention层到Transformer网络(个人向笔记)

Single Head Self-Attention 上节课讲到的属于单头注意力&#xff1a; Multi-Head Self-Attention 使用 l l l 个单头注意力层堆叠成一个多头注意力层&#xff0c;注意它们之间不共享参数一个单头注意力有 3 个参数矩阵&#xff0c;所以多头注意力有 3 l 3l 3l 个参数矩阵…

docker文档

一、docker概述 1、java项目通过docker打包成镜像&#xff08;包含了所有的环境&#xff09;放到docker仓库中&#xff0c;只需要下载发布的镜像直接运行即可&#xff1b; 2、虚拟机技术的缺点&#xff1a; 资源占用多、冗余步骤多、启动很慢 容器化技术&#xff1a; 比较do…

色彩与笔触的交响:广州米塔在线科教技术有限公司揭秘PS绘画秘籍!

在数字艺术的广阔天地里,PS无疑是一颗璀璨的明星&#xff0c;它不仅在图像处理领域独领风骚&#xff0c;更以其强大的功能成为了众多艺术家和设计师进行数字绘画的首选工具。广州米塔在线科教技术有限公司&#xff0c;作为致力于艺术教育与技术分享的平台&#xff0c;深知掌握P…

RNN及其变体

RNN及其变体 RNN模型定义 循环神经网络:一般接受的一序列进行输入,输出也是一个序列 作用和应用场景: RNN擅长处理连续语言文本,机器翻译,文本生成,文本分类,摘要生成 RNN模型的分类 根据输入与输出结构 N Vs N : 输入和输出等长,应用场景:对联生…

科技改变搜索习惯:Anytxt Searcher,重新定义你的信息获取方式!

前言 史蒂夫乔布斯所言&#xff1a;“创新就是把事物联系起来的能力”。这种能力不仅推动了全球科技的飞速发展&#xff0c;也深刻影响着我们的日常生活方式。在这样的背景下&#xff0c;一款名为Anytxt Searcher的本地数据全文搜索引擎应运而生&#xff0c;它以其独特的功能和…

【Android】使用 ADB 查看 Android 设备的 CPU 使用率

目录 一 查看整体CPU使用率 1 top 二 查看特定应用的CPU使用率 1 获取特定应用的进程 ID (PID) 2 使用 top 命令并过滤该 PID 三 常见的CPU相关命令参数 1 adb shell top 参数 一 查看整体CPU使用率 1 top top命令将显示当前所有进程的 CPU 使用情况&#xff0c;包括每…

【Datawhale AI夏令营】从零上手CV竞赛Task3

文章目录 前言一、数据集增强二、设置 YOLO 模型训练参数三、模型微调总结 前言 本文的Task3对Task1的baseline代码继续进行优化的过程。 一、数据集增强 数据增强是机器学习和深度学习中常用的技术&#xff0c;用于通过从现有数据集中生成新的训练样本来提高模型的泛化能力。…

gitee版本控制

前置要求&#xff1a; 安装Git git下载地址&#xff1a;https://git-scm.com/download/win 注册gitee gitee官网&#xff1a;Gitee - 基于 Git 的代码托管和研发协作平台 创建普通项目 目录 git推送远程仓库基本操作 克隆仓库到本地 项目上传 版本管理 分支管理版本…

基于ssm的实习课程管理系统/在线课程系统

实习课程管理系统 摘 要 互联网的快速发展&#xff0c;给各行各业带来不同程度的影响&#xff0c;悄然改变人们的生活、工作方式&#xff0c;也倒逼很多行业创新和变革&#xff0c;以适应社会发展的变化。人们为了能够更加方便地管理项目任务&#xff0c;实习课程管理系统被人们…