YoloV10 训练自己的数据集(推理,转化,C#部署)

目录

一、下载

三、开始训练

train.py

detect.py

export.py

超参数都在这个路径下

四、C#读取yolov10模型进行部署推理

如下程序是用来配置openvino

配置好引用后就可以生成dll了  再创建一个控件,作为显示 net framework 4.8版本的

再nuget工具箱里下载 opencvsharp4  以及openvino 

然后主流程代码

效果

我的yolov10 训练源码

C#部署yolov10源码


一、下载

       GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection

或者你可以再浏览器搜索框里直接搜索      yolov10 github

二、环境配置 

下载anaconda 并安装 在网上随意下载一个2022版本的就行

      yolov10和yolov8的文件结构差不多  所以如果你训练过其他的yolov5以上的yolo,你可以直接拷贝环境进行使用,当然你如果想配置gpu   

就需要cuda  cudnn  和 gpu版本的torch    

其他的直接pip install 即可

pip install requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

下方网站中下载你需要的版本下载时要注意对应关系,

cuda和cudnn各个版本的Pytorch下载网页版,onnx,ncnn,pt模型转化工具_cuda国内镜像下载网站-CSDN博客

三、开始训练

     有一点要注意v10版本其实是从v8版本上面改的 所以v10的预训练模型你需要自行下载  否则就会下载成v8的

    首先标注数据集  在pycharm 中下载labelimg

pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

下载好后直接在终端输入labelimg 开始标注 训练流程基本和yolov5差不多

在yolov10的根目录下创建一个名为data的文件夹 里面再创建一个data.yaml文件 用于数据集的读取

再在根目录创建三个py文件  分别是  train.py  detect.py    export.py

train.py

from ultralytics import YOLOv10model_yaml_path = "ultralytics/cfg/models/v10/yolov10s.yaml"
#数据集配置文件
data_yaml_path = 'data/data.yaml'
#预训练模型
pre_model_name = 'yolov10s.pt'if __name__ == '__main__':#加载预训练模型model = YOLOv10(model_yaml_path).load(pre_model_name)#训练模型results = model.train(data=data_yaml_path,epochs=450,batch=8,device=0,name='train/exp')# yolo export model="H:\\DL\\yolov10-main\\runs\\detect\\train\\exp\\weights\\best.pt" format=onnx opset=13 simplify

detect.py


from ultralytics import YOLOv10import torch
if  torch.cuda.is_available():device = torch.device("cuda")
else:raise Exception("CUDA is not")model_path = r"H:\\DL\\yolov10-main\\runs\\detect\\train\\exp4\\weights\\best.pt"
model = YOLOv10(model_path)
results = model(source=r'H:\DL\yolov10-main\dataDakeset\two_CD_double\test',name='predict/exp',conf=0.45,save=True,device='0')

export.py

from ultralytics import YOLOv10
model=YOLOv10("H:\\DL\\yolov10-main\\runs\\detect\\train\\exp\\weights\\best.pt")model.export(format='onnx')# 'torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle'

超参数都在这个路径下

然后设置好参数就可以直接训练了

推理用detect.py 推理   转化用export.py 转化, 转化为哪种模型 就替换即可

四、C#读取yolov10模型进行部署推理

我们需要设定yolov10的模型结构

using OpenCvSharp;
using OpenVinoSharp.Extensions.result;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;namespace Yolov10_DLLnet
{public class YOLOv10Det : YOLO{public YOLOv10Det(string model_path, string engine, string device, int categ_nums, float det_thresh, float det_nms_thresh, int input_size): base(model_path, engine, device, categ_nums, det_thresh, det_nms_thresh, new int[] { 1, 3, input_size, input_size },new List<string> { "images" }, new List<int[]> { new int[] { 1, 4 + categ_nums, 8400 } }, new List<string> { "output0" }){}protected override BaseResult postprocess(List<float[]> results){List<Rect> positionBoxes = new List<Rect>();List<int> classIds = new List<int>();List<float> confidences = new List<float>();// Preprocessing output resultsfor (int i = 0; i < results[0].Length / 6; i++){int s = 6 * i;if ((float)results[0][s + 4] > 0.5){float cx = results[0][s + 0];float cy = results[0][s + 1];float dx = results[0][s + 2];float dy = results[0][s + 3];int x = (int)((cx) * m_factor);int y = (int)((cy) * m_factor);int width = (int)((dx - cx) * m_factor);int height = (int)((dy - cy) * m_factor);Rect box = new Rect();box.X = x;box.Y = y;box.Width = width;box.Height = height;positionBoxes.Add(box);classIds.Add((int)results[0][s + 5]);confidences.Add((float)results[0][s + 4]);}}DetResult re = new DetResult();// for (int i = 0; i < positionBoxes.Count; i++){re.add(classIds[i], confidences[i], positionBoxes[i]);}return re;}}
}

然后再设置各项参数 你可以再其中自己定义一个文件 里面写上你需要的类  比如置信度,类别  以及类别数量等等。为后续的dll生成做准备。

如下程序是用来配置openvino

using OpenCvSharp.Dnn;
using OpenCvSharp;
using OpenVinoSharp;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Threading.Tasks;
using System.Reflection;
//using static System.Windows.Forms.Design.AxImporter;namespace Yolov10_DLLnet
{public class Predictor : IDisposable{private Core core;private Model model;private CompiledModel compiled;private InferRequest openvino_infer;private Net opencv_infer;private string engine = null;public Predictor() { }public Predictor(string model_path, string engine, string device){if (model_path == null){throw new ArgumentNullException(nameof(model_path));}this.engine = engine;if (engine == "OpenVINO"){core = new Core();model = core.read_model(model_path);compiled = core.compile_model(model, device);openvino_infer = compiled.create_infer_request();}}public void Dispose(){openvino_infer.Dispose();compiled.Dispose();model.Dispose();core.Dispose();GC.Collect();}public List<float[]> infer(float[] input_data, List<string> input_names, int[] input_size, List<string> output_names, List<int[]> output_sizes){List<float[]> returns = new List<float[]>();var input_tensor = openvino_infer.get_input_tensor();input_tensor.set_data(input_data);openvino_infer.infer();foreach (var name in output_names){var output_tensor = openvino_infer.get_tensor(name);returns.Add(output_tensor.get_data<float>((int)output_tensor.get_size()));}return returns;}}
}

创建一个名为yolo的cs文件用于 将yolov10模型结构做引用

//using Microsoft.VisualBasic.Logging;
using OpenCvSharp;
using OpenVinoSharp.Extensions.model;
using OpenVinoSharp.Extensions.process;
using OpenVinoSharp.Extensions.result;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
//using Yolov10_DLLnet;
using static OpenVinoSharp.Node;namespace Yolov10_DLLnet
{public class YOLO : IDisposable{protected int m_categ_nums;protected float m_det_thresh;protected float m_det_nms_thresh;protected float m_factor;protected int[] m_input_size;protected List<int[]> m_output_sizes;protected List<string> m_input_names;protected List<string> m_output_names;protected List<int> m_image_size = new List<int>();private Predictor m_predictor;Stopwatch sw = new Stopwatch();public YOLO(){m_predictor = new Predictor();}public YOLO(string model_path, string engine, string device, int categ_nums, float det_thresh,float det_nms_thresh, int[] input_size, List<string> input_names, List<int[]> output_sizes, List<string> output_names){m_predictor = new Predictor(model_path, engine, device);m_categ_nums = categ_nums;m_det_thresh = det_thresh;m_det_nms_thresh = det_nms_thresh;m_input_size = input_size;m_output_sizes = output_sizes;m_input_names = input_names;m_output_names = output_names;}float[] preprocess(Mat img){m_image_size = new List<int> { (int)img.Size().Width, (int)img.Size().Height };Mat mat = new Mat();Cv2.CvtColor(img, mat, ColorConversionCodes.BGR2RGB);mat = Resize.letterbox_img(mat, (int)m_input_size[2], out m_factor);mat = Normalize.run(mat, true);return Permute.run(mat);}List<float[]> infer(Mat img){List<float[]> re;float[] data = preprocess(img);re = m_predictor.infer(data, m_input_names, m_input_size, m_output_names, m_output_sizes);return re;}public BaseResult predict(Mat img){List<float[]> result_data = infer(img);BaseResult re = postprocess(result_data);return re;}protected virtual BaseResult postprocess(List<float[]> results){return new BaseResult();}public void Dispose(){m_predictor.Dispose();}public static YOLO GetYolo(string model_type, string model_path, string engine, string device,int categ_nums, float det_thresh, float det_nms_thresh, int input_size){return new YOLOv10Det(model_path, engine, device, categ_nums, det_thresh, det_nms_thresh, input_size);}protected static float sigmoid(float a){float b = 1.0f / (1.0f + (float)Math.Exp(-a));return b;}}
}

配置好引用后就可以生成dll了  再创建一个控件,作为显示 net framework 4.8版本的

再nuget工具箱里下载 opencvsharp4  以及openvino 

然后主流程代码

//using Microsoft.VisualBasic.Logging;
using OpenCvSharp;
using OpenVinoSharp.Extensions.process;
using OpenVinoSharp.Extensions.result;
using OpenVinoSharp.Extensions.utility;
using SharpCompress.Common;
using System.Collections.Generic;
using System;
using System.Diagnostics;
using System.Runtime.CompilerServices;
using System.Windows.Forms;
using static OpenVinoSharp.Node;
using static System.Windows.Forms.VisualStyles.VisualStyleElement;
using Point = OpenCvSharp.Point;using Yolov10_DLLnet;
using System.Drawing;
using ZstdSharp.Unsafe;namespace YOLOV10_WinformDemo
{public partial class Form1 : Form{//string filePath = "";private YOLO yolo;public Form1(){InitializeComponent();yolo = new YOLO();//string model_path = "best_0613.onnx";}/// <summary>/// yolov10 onnx模型文件路径/// </summary>private string model_path = "H:\\YCDandPCB_Yolov5_net\\Yolov10_and_Yolov5Seg\\yolov10_Detztest\\YOLOV10_WinformDemo\\bestV10det.onnx";/// <summary>/// 开始识别/// </summary>/// <param name="sender"></param>/// <param name="e"></param>private void button2_Click(object sender, EventArgs e){Stopwatch sw = new Stopwatch();OpenFileDialog openFile = new OpenFileDialog();string filePath = "";if (openFile.ShowDialog() == DialogResult.OK){filePath = openFile.FileName;}//目标检测//string model_path = "best_0613.onnx";classesLabel label = new classesLabel();string model_type = "YOLOv10Det";string engine_type = "OpenVINO";string device = "CPU";//#################   阈值   #######################################float score = label.Score_Threshold;float nms = label.NMS_Threshold;int categ_num = label.classes_count_1;int input_size = label.W_H_size_1;yolo = YOLO.GetYolo(model_type, model_path, engine_type, device, categ_num, score, nms, input_size);//#####################  图片推理阶段  #######################//System.Drawing.Image image = Image.FromFile(openFile.FileName);//string input_path = openFile;Mat img = Cv2.ImRead(filePath);pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(img);sw.Restart();(Mat, BaseResult) re_img = image_predict(img);sw.Stop();pictureBox2.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(re_img.Item1);DetResult detResult = re_img.Item2 as DetResult;for (int i = 0; i < detResult.count; i++){//textBox1.Text = detResult.datas[i].lable;//置信度//textBox2.Text = detResult.datas[i].score.ToString("0.00");int X = detResult.datas[i].box.TopLeft.X;int Y = detResult.datas[i].box.TopLeft.Y;int W = detResult.datas[i].box.Width;int H = detResult.datas[i].box.Height;//textBox3.Text = X.ToString();//textBox4.Text = Y.ToString();//textBox5.Text = W.ToString();//textBox6.Text = H.ToString();Console.WriteLine(X);Console.WriteLine(Y);}// 获取并打印运行时间//TimeSpan ts = sw.Elapsed;textBox7.Text = sw.ElapsedMilliseconds.ToString();}(Mat, BaseResult) image_predict(Mat img, bool is_video = false){Mat re_img = new Mat();//#############################  classes  ###################################classesLabel label = new classesLabel();List<string> class_names = label.class_names;//开始识别,并返回识别结果BaseResult result = yolo.predict(img);result.update_lable(class_names);re_img = Visualize.draw_det_result(result, img);return (re_img, result);}}
}

效果

我的yolov10 训练源码

【免费】yolov10优化代码,包含,train.py,detect.py,export.py脚本以及预训练模型资源-CSDN文库

C#部署yolov10源码

C#部署YoloV10目标检测.netframework4.8,打开即用内有(主程序和dll生成程序)资源-CSDN文库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/424138.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

快速搭建最简单的前端项目vue+View UI Plus

1 引言 ‌‌Vue是一套用于构建Web前端界面的渐进式JavaScript框架。‌‌它以其易学易用、性能出色、灵活多变而深受开发者喜爱&#xff0c;并且与其他前端框架&#xff08;如‌React和‌Angular&#xff09;相比&#xff0c;在国内市场上受到了广泛的认可和使用。点击进入官方…

十四、centos7 yum报错:cannot find a valid baseurl for repo:base/7/x86_64的解决方案

&#x1f33b;&#x1f33b;目录&#x1f33b;&#x1f33b; 一、 centos7 yum报错&#xff1a;cannot find a valid baseurl for repo:base/7/x86_64二、分析错误三、解决方案3.1 检查网络连接3.2 检查DNS设置3.3 检查YUM仓库配置3.3.1 使用官方CentOS镜像配置3.3.2 使用阿里云…

【ArcGISProSDK】初识

ArcGIS Pro SDK 提供四种主要的可扩展性模式&#xff1a;加载项、托管配置、插件数据源和 CoreHost 应用程序。 各模块文件对比 API 核心 核心程序集位于 {ArcGIS Pro 安装文件夹}\bin 中。 程序集描述ArcGIS.Core.dll 提供 CIM、地理数据库、几何图形和公共设施网络 API。 …

JFLASH添加支持PY32F002芯片的方法

嵌入式及电子工程师、爱好者必备工具 0.91寸OLED屏幕大小的音频频谱&#xff0c;炫酷&#xff01; 0.96寸OLED控制器SSD1306其他两种显示模式 CX32l003 点亮0.96寸OLED屏幕 0.96寸OLED屏幕控制器SSD1306详解 JLINK无法烧写程序&#xff0c;原因让人意外 Luat开发板的烧写 …

计算机毕业设计Python知识图谱美团美食推荐系统 美团餐厅推荐系统 美团推荐系统 美食价格预测 美团爬虫 美食数据分析 美食可视化大屏

《Python知识图谱美团美食推荐系统》开题报告 一、研究背景与意义 随着信息技术的飞速发展和互联网应用的普及&#xff0c;人们的消费习惯逐渐从线下转移到线上&#xff0c;外卖行业迎来了前所未有的发展机遇。美团作为国内领先的生活服务电子商务平台&#xff0c;拥有庞大的…

Kafka 基于SASL/SCRAM动态认证部署,kafka加账号密码登录部署

文章目录 前言下载 kafka安装启动zookeeper添加账号密码 启动kafka修改kafka配置文件增加jaas授权文件修改启动文件&#xff0c;启动kafka检查是否部署成功 offset explore 连接 前言 其实挺简单的几个配置文件&#xff0c;问大模型一直没说到点上&#xff0c;绕晕了。SASL/SC…

ardunio超声波测距实验

工作原理 模块有2个超声波换能器&#xff08;如图所示&#xff09;&#xff0c;一个发出声波&#xff0c;另一个接收物体反射回来的声波&#xff0c;这中间所经过的时间即声波传播的时间&#xff0c;再结合声速就能计算出&#xff1a; 距离 声速 * 时间 2 如何使用HC-SR04模块…

域控操作十七点五:域用户无管理员权限下安装IT打包的软件

1&#xff0c;需要软件Runasspcadmin三件套和winrar压缩软件 2&#xff0c;将需要打包的软件放进这个文件夹内&#xff0c;使用播放器举个例子 3&#xff0c;打开runasspcadmin.exe 按图片写就行了 文件夹现在是这样的然后全选右击&#xff0c;用WinRAR添加到压缩包 这个可以自…

【LabVIEW学习篇 - 24】:生产者/消费者设计模式

文章目录 生产者/消费者设计模式案例&#xff1a;控制LED等亮灭 生产者/消费者设计模式 生产者/消费者是多线程编程中最基本的一种模式&#xff0c;使用非常普遍。从软件角度看&#xff0c;生产者就是数据的提供方&#xff0c;而消费者就是数据的消费处理方&#xff0c;二者之…

【Unity】在Unity 3D中使用Spine开发2D动画

文章目录 内容概括前言下载安装 Spine Pro导入Unity插件Spine动画导入Unity使用展现动画效果展现 内容概括 本文主要讲解 Spine Pro 免&#xff08;破&#xff09;费&#xff08;解&#xff09;版的安装&#xff0c;以及如何将动画导入到Unity中使用。 前言 通常要用 Spine …

基于less和scss 循环生成css

效果 一、less代码 复制代码 item-count: 12; // 生成多少个 .item 类.item-loop(n) when (n > 0) {.icon{n} {background: url(../../assets/images/menu/icon{n}.png) no-repeat;background-size: 100% 100%;}.item-loop(n - 1);}.item-loop(item-count);二、scss代码 f…

Oracle EBS AP预付款行分配行剩余预付金额数据修复

系统环境 RDBMS : 12.1.0.2.0 Oracle Applications : 12.2.6 问题情况 AP预付款已验证和自动审批但是未过账已经AP付款但是又撤消付款并且未过账问题症状 AP预付款暂挂: AP预付款行金额(等于发票金额)与分配行金额不相等: 取消AP预付款提示如下:

Spark处理结构化数据:DataFrame、DataSet、SparkSQL

Spark处理结构化数据&#xff1a;DataFrame、DataSet、SparkSQL 1. DataFrame: 表示分布式数据集合&#xff0c;以表格的形式存储数据&#xff0c;具有行和列。 支持丰富的操作和转换&#xff08;如过滤、选择、聚合等&#xff09;。 提供了对数据的高级抽象&#xff0c;简化了…

Linux:五种IO模型

1&#xff1a;五种IO模型 1&#xff1a;阻塞IO 阻塞IO: 在内核将数据准备好之前,系统调用会一直等待.所有的套接字,默认 都是阻塞方式。 2&#xff1a;非阻塞 IO 非阻塞 IO: 如果内核还未将数据准备好, 系统调用仍然会直接返回, 并且返回EWOULDBLOCK 错误码。 非阻塞 IO 往往需…

通过覆写 url_for 将 flask 应用部署到子目录下

0. 缘起 最近用 flask 写了一个 web 应用&#xff0c;需要部署到服务器上。而服务器主域名已经被使用了&#xff0c;只能给主域名加个子目录进行部署&#xff0c;比如主域名 example.org &#xff0c;我需要在 example.org/flask 下部署。这时 flask 应用里的内部连接们就出现…

基于UDP的简易网络通信程序

目录 0.前言 1.前置知识 网络通信的大致流程 IP地址 端口号&#xff08;port&#xff09; 客户端如何得知服务器端的IP地址和端口号&#xff1f; 服务器端如何得知客户端的IP地址和端口号&#xff1f; 2.实现代码 代码模块的设计 服务器端代码 成员说明 成员实现 U…

树莓派交叉编译

目录 一、交叉编译的认知 1.1 本地编译&#xff1a; 1.2 交叉编译是什么&#xff1a; 1.3 为什么要交叉编译&#xff1a; 1.4 什么是宿主机&#xff1f;什么是目标机&#xff1f; 1.5 如何进行交叉编译&#xff1a; 二、交叉编译工具链的安装 2.1 下载交叉编译工具&…

数据中台与数据飞轮:如何结合两者优势推动企业数据驱动转型?

一、数据时代的双轨列车 在回答这个问题之前&#xff0c;我们可以借用交通系统来形容一下数据中台和数据飞轮。数据中台是一种集成企业内外各类数据资源&#xff0c;通过标准化处理、存储和分析&#xff0c;为前台业务提供高效数据服务支持的技术和管理体系。而数据飞轮则强调…

MySQL权限控制(DCL)

我的mysql里面的一些数据库和一些表 基本语法 1.查询权限 show grants for 用户名主机名;例子1&#xff1a;查询权限 show grants for heima%;2.授予权限 grant 权限列表 on 数据库名.表名 to 用户名主机名;例子2&#xff1a; 授予权限 grant all on itcast.* to heima%;…

Humanize AI 简介

Humanize AI 简介 Humanize AI 官方首页截图 文章目录 Humanize AI 简介1 Humanize AI 是什么2 Humanize AI 能做什么3 Humanize AI 怎么用4 Humanize AI 怎么收费5 结论 1 Humanize AI 是什么 数字时代的当下&#xff0c;AI 人工智能已成为内容创作不可或缺的一部分。从生成文…