传知代码-多示例AI模型实现病理图像分类

代码以及视频讲解

本文所涉及所有资源均在传知代码平台可获取

概述

本文将基于多示例深度学习EPLA模型实现对乳腺癌数据集BreaKHis_v1的分类。EPLA模型是处理组织病理学图像的经典之作。EPLA模型是基于多示例学习来进行了,那么多示例学习模型对处理病理学图像具有天然的优势,因为多示例学习(Multiple Instance Learning 简称 MIL)是由监督型学习算法演变出的一种方法,定义“”为多个示例的集合,具有广泛的应用。学习者不是接收一组单独标记的实例,而是接收一组带标签的包,每个包拥有多个实例。在多实例二进制分类的简单情况下,如果包中的所有实例都是否定的,则可以将包标记为否定。另一方面,如果包中只要至少有一个是正面的,则包被标记为阳性。所以这与将组织病理学图像WSI就可以认为是一个包;而从WSI切分下来的patch就可以认为是一个个示例
在这里插入图片描述

EPLA框架解读

EPLA原文是用来预测结直肠癌微卫星不稳定性MSI的,但是在摘要部分明确说明了可以用来预测其他数据集,这也得益于多示例模型处理病理学图像的天然优势。下面就来看一下论文整体的框架结构图
在这里插入图片描述

数据预处理

在原文中拿到组织病理学图像WSI后,首先要对WSI中的肿瘤区域进行标注,然后进行切成小patch,这是因为:

聚焦关键区域:病理图像通常非常大,包含大量的背景信息(如正常组织、脂肪组织等),这些信息对肿瘤检测和分类没有帮助。通过对肿瘤区域进行标注,可以引导模型关注关键的病变区域,从而提高模型的训练效率和性能。
减小计算复杂度:病理学图像(特别是全切片图像,WSI)通常非常大,直接处理整张图像需要消耗大量的计算资源和内存。将大图像切片成小块(patch)不仅降低了计算的复杂性,还能有效利用现有的计算资源进行模型训练。
数据增强和多样性:通过将图像切成多个patch,可以大大增加可用于训练的数据量。这些patch代表了同一图像中的不同局部区域,能够让模型在学习时看到更多的变异性,提升模型的泛化能力。
平衡正负样本比例:在病理图像中,肿瘤区域通常占比较小。通过切片成patch并对肿瘤区域进行标注,能够更好地平衡肿瘤区域(正样本)和非肿瘤区域(负样本)的比例,防止模型过拟合于背景信息。
捕捉局部细节:病理图像中有许多重要的微观结构,例如细胞形态、细胞核大小、密度等。切成patch后,模型可以更专注于局部特征的学习,从而更好地捕捉与疾病相关的细节。
提高训练效率:小尺寸的patch在计算上更快,易于并行处理。这样不仅能够加快模型的训练速度,还能更好地利用硬件资源(如GPU)。

在patch级别的预测中,使用残差卷积神经网络(ResNet-18)进行训练,通过MIL框架计算patch的预测概率,其中每个patch被分配了WSI的标签。网络的优化采用了二元交叉熵(BCE)损失函数,使用小批量梯度下降法进行训练。

词袋模型

BoW方法中,每个patch被映射为一个TF-IDF浮点变量,并计算TF-IDF特征向量来表示WSI。然后使用传统机器学习分类器对这些特征向量进行训练,以预测每个WSI的MS状态。具体可以理解为:

在BoW方法中,首先把大图像切成小块(patch),然后通过一种叫做TF-IDF的技术,把每个小块的特征转化为数值。TF-IDF原本是用在文本分析中的,可以帮助我们理解哪些词在一篇文章里更重要。这里,我们用类似的方法来判断每个小块图像的重要性
接着,把这些数值组合成一个特征向量,用来代表整张大图像。然后,使用传统的机器学习算法,比如朴素贝叶斯,来对这些特征进行训练,最终的目标是预测这张大图像的微卫星状态(即判断图像是否有微卫星不稳定性,和癌症相关)。

PALHI模型

在PALHI方法中,先对大图像(WSI)进行分割成小块(patch),然后为每个小块进行预测,得出这些小块的预测概率。接着,将这些小块的预测概率用直方图的形式汇总,直方图记录了每种概率值出现的频率,从而形成一个特征表示,这个特征就用来表示整个大图像(WSI)。
之后,利用一种叫做极端梯度提升(xgboost)的机器学习分类器,来处理这些直方图特征,并通过训练预测该大图像的微卫星状态(即判断图像是否表现出微卫星不稳定性)。xgboost是一种非常强大的分类器,它通过结合多个决策树模型来提高分类性能。

聚合

最后通过一定的比例将BoW模型和PALHI模型按照一定的比例进行聚合,从而做出最终的预测。

论文复现

数据集介绍

Spanhol等人(2016)发布BreakHis (breast cancer histopathological database )数据集包含了来自82位患者7909幅乳腺组织病理图像。BreakHis对乳腺的病变给出了细粒度的临床分型标注信息包括良性病变中的乳腺病(adenosis, A)、纤维腺瘤(fibroadenoma, F)、叶状瘤( phyllodes tumor, PT)管状腺瘤(tubular adenoma, TA) ,以及恶性病变中的导管癌(ductal carcinoma, DC)、小叶癌(lobular carcinoma, LC),黏液癌(mucinous carcinoma, MC)和乳头状癌(papillary carcinoma, PC)。这让BreakHis数据集不仅能推进良恶性二分类算法研究,还可以推进临床意义更重大的病理分型算法(多分类)研究。本文只针对良性和恶行进行二分类。
在这里插入图片描述
在这里插入图片描述

数据集处理

由于整张WSI的处理过程中涉及到肿瘤区域的标注,但是在实际情况中难以找到专业的病理学家为我们标注数据,因此,我们选用了已经数据预处理好的BreaKHis_v1数据集进行复现。
除此之外需要将切分好的数据集处理成csv文件:路径和标签两列。如下图:
在这里插入图片描述

以上是patch级别的标签,它继承了WSI的标签,为了获取WSI级别的预测结果也需要wsi级别的标签,如下:
在这里插入图片描述

环境配置

* torch 1.1.0
* torchvision 0.2.1
* numpy 1.15.2
* pandas 1.0.3
* xgboost 0.90
* pillow 5.3.0
* sklearn 0.23.1
* logging 0.5.1.2
* joblib 0.15.1
* pickle 4.0

运行步骤

  1. 特征提取
python dnnPatchClser_rst.py  # dnnPatchClser_rst.py为**附件**中的脚本,主要作用是**提取图像特征**。
def build_model_on(device):model_ft = models.resnet18(pretrained=True)#model_ft = torch.load(model_path,map_location=device)#num_ftrs = model_ft.fc.in_features#model_ft.fc = nn.Linear(num_ftrs, 2)#model_ft = model_ft.to(device)return model_ft

这里可以使用经过该数据集训练过的模型进行提取特征会更准确。比如使用ResNet网络对该数据集提取特征后保存的权重文件,重新加载到这个脚本中。这个脚本运行完成后会产生两个特征文件,train和test
2. PALHI模型

python PALHI.py     # PALHI.py 为**附件**中的脚本,主要作用是**得到patch的重要性**。

该脚本会加载 dnnPatchClser_rst.py产生的两个文件。

  1. BoW模型
python BoW.py  #  BoW.py 为**附件**中的脚本,主要作用是**WSI级别的概率**。

该脚本同样会加载 dnnPatchClser_rst.py产生的两个文件。

  1. 模型聚合
python ensemble.py       #  ensemble.py 为**附件**中的脚本,主要作用是**聚合上述两个结果**。

该脚本同样会加载 PALHI和BoW模型产生的两个文件。从而产生最终的预测结果

模型特点与改进建议

该模型能够从最基础的提取图像特征,得到每一个patch的特征值,然后将这些patch的预测概率用直方图的形式汇总,直方图记录了每种概率值出现的频率,从而形成一个特征表示。改进建议是可以采用其他的汇总方式得到的结果来表征WSI。接着使用词袋模型将每个patch被映射为一个TF-IDF浮点变量,并计算TF-IDF特征向量来表示WSI,然后使用传统机器学习分类器对这些特征向量进行训练,以预测每个WSI的MS状态。改进建议那么这里可以使用具有针对性的分类器,也可以进行相应的分类器的调参,提高预测准确率。

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/428099.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

优化算法(一)—遗传算法(Genetic Algorithm)附MATLAB程序

遗传算法(Genetic Algorithm, GA)是一种启发式搜索算法,用于寻找复杂优化问题的近似解。它模拟了自然选择和遗传学中的进化过程,主要用于解决那些传统算法难以处理的问题。 遗传算法的基本步骤: 初始化种群&#xff0…

GNN-RAG:用于大模型推理的图神经检索

GNN-RAG:用于大模型推理的图神经检索 秒懂大纲提出背景解法拆解全流程优化创意总结 论文:GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning 代码:https://github.com/cmavro/GNN-RAG 秒懂大纲 ├── GNN-RAG【主题】…

美国站群服务器优化技巧解析

美国站群服务器,作为专为管理多个网站而设计的托管解决方案,其优化对于提升网站性能和用户体验至关重要。以下是一些关键的优化技巧: 首先,硬件配置是基础。选择高性能的CPU、大容量的内存以及高速的硬盘(如SSD)是提升服务器运算速…

Java 集合详解

目录 一. 概述 二. Collection接口实现类 三. Map接口实现类 四. 线程安全集合 五. List接口下集合实现原理 1. ArrayList实现原理 1.1. 基于动态数组 1.2. 随机访问 1.3. 添加元素 1.4. 删除元素 1.5. 迭代器 1.6. 克隆和序列化 1.7. ArrayList简单使用 2. Link…

Linux环境变量进程地址空间

目录 一、初步认识环境变量 1.1常见的环境变量 1.2环境变量的基本概念 二、命令行参数 2.1通过命令行参数获取环境变量 2.2本地变量和内建命令 2.3环境变量的获取 三、进程地址空间 3.1进程(虚拟)地址空间的引入 3.2进程地址空间的布局和理解 …

11年计算机考研408-数据结构

设执行了k次。 解析: d要第一个出,那么abc先入栈,d入栈然后再出栈,这前面是一个固定的流程,后面就很灵活了,可以ecba,ceba,cbea,cbae。 答案是4个序列。 解析&#xff1a…

【论文阅读】PERCEIVER-ACTOR: A Multi-Task Transformer for Robotic Manipulation

Abstract transformers凭借其对大型数据集的扩展能力,彻底改变了视觉和自然语言处理。但在机器人操作中,数据既有限又昂贵。通过正确的问题表述,操纵仍然可以从变形金刚中受益吗?我们使用peract来研究这个问题,peract…

Spring Boot利用dag加速Spring beans初始化

1.什么是Dag? 有向无环图(Directed Acyclic Graph),简称DAG,是一种有向图,其中没有从节点出发经过若干条边后再回到该节点的路径。换句话说,DAG中不存在环路。这种数据结构常用于表示并解决具有依赖关系的问题。 DAG的…

elasticsearch同步mysql方案

文章目录 1、1. 使用数据库触发器2. 使用定时任务3. 监听MySQL二进制日志(binlog)4. 使用数据管道5. 使用第三方工具或服务6. 编写自定义脚本注意事项 2、1. 使用Logstash步骤:示例配置: 2. 使用Debezium步骤: 3. 自定…

【Redis入门到精通三】Redis核心数据类型(List,Set)详解

目录 Redis数据类型 ​编辑 1.List类型 (1)常见命令 (2)内部编码 2.Set类型 (1)常见命令 (2)内部编码 Redis数据类型 查阅Redis官方文档可知,Redis提供给用户的核…

JavaScript - Document文档操作

1. 前言 ​​​​​​​ 编写网页时,我们需要时刻操作文档进而完成我们想要的效果。这就是通过文档对象模型实现,使用Document对象控制HTML以及样式信息的API 2. Document的树结构 在了解Document文档对象模型之前,我们先了解Dom的树结构 …

使用scp命令从本地往服务器传输文件失败

解决办法: 找到这个文件,打开,将里面的服务器ip对应的一行数据删掉即可。

(c语言+数据结构链表)项目:贪吃蛇

目录 1.项目背景 2.游戏效果演⽰ 3. ⽬标 4. 技术要点 5. Win32 API介绍 5.1 Win32 API 5.2 控制台程序 5.3 控制台屏幕上的坐标COORD 5.4 GetStdHandle 5.5 GetConsoleCursorInfo 5.5.1 CONSOLE_CURSOR_INFO 5.6 SetConsoleCursorInfo 5.7 SetConsoleCursorPositi…

d3dcompiler47dll丢失怎么解决,详细介绍6种解决方案

在电脑使用过程中,我们可能会遇到各种问题,其中之一就是系统提示某个文件缺失。其中,d3dcompiler_47.dll是许多用户经常遇到的问题之一。这个文件是DirectX组件的一部分,如果缺失,可能会导致游戏或应用程序无法正常运行…

Qt/C++ 多线程同步机制详解及应用

在多线程编程中,线程之间共享资源可能会导致数据竞争和不一致的问题。因此,采用同步机制确保线程安全至关重要。在Qt/C中,常见的同步机制有:互斥锁(QMutex、std::mutex)、信号量(QSemaphore&…

Ansbile-变量

文章目录 一、Ansible的常量(内置的变量)有哪些???????????????&#xff1…

vulnhub(11):derpnstink(hydra爆破用户名和密码、验证的文件上传)

端口 nmap主机发现 nmap -sn 192.168.159.120/24 ​ Nmap scan report for 192.168.159.120 Host is up (0.00020s latency). ​ 120是新出现的机器,他就是靶机 nmap端口扫描 nmap -Pn 192.168.159.120 -p- --min-rate 10000 -oA nmap/scan 扫描开放端口保存到 nma…

【论文笔记】Are Large Kernels Better Teacheres than Transformers for ConvNets

Abstract 本文提出蒸馏中小核ConvNet做学生时,与Transformer相比,大核ConvNet因其高效的卷积操作和紧凑的权重共享,使得其做教师效果更好,更适合资源受限的应用。 用蒸馏从Transformers蒸到小核ConvNet的效果并不好,原…

图的应用(关键路径)

基于你设计的带权有向无环图,写出所有合法的关键路径,并算出关键路径总长度 文字描述:关键路径总长度的现实意义是什么? 1.关键路径 总长度454316 2.现实意义 从源点到汇点的所有路径中,具有最大路径长度的路径称…

好的头戴式降噪耳机一定很贵吗?四款热门头戴耳机盘点及推荐!

在快节奏的现代生活中,噪音无处不在,它常常干扰着我们的工作、学习与休闲时光。而一款高性价比的降噪蓝牙耳机,就如同一个贴心的伙伴,能为我们营造出一片宁静的听觉空间。如今,耳机市场蓬勃发展,想要好的头…