使用Python进行数据分析入门

文章目录

      • Python环境搭建
        • 安装Anaconda
        • 验证安装
      • 必备库介绍
        • NumPy
        • Pandas
        • Matplotlib
        • SciPy
      • 数据导入与清洗
        • 导入数据
        • 清洗数据
      • 数据探索与分析
        • 描述性统计
        • 相关性分析
      • 数据可视化
        • 绘制直方图
      • 高级主题
        • 机器学习
        • 深度学习
      • 总结

随着大数据时代的到来,数据分析变得越来越重要。Python作为一种易学易用且功能强大的编程语言,成为了许多数据分析师的首选工具。本教程旨在帮助初学者快速掌握使用Python进行数据分析的基础知识。

Python环境搭建

首先,你需要在计算机上安装Python。推荐使用Anaconda,因为它包含了Python本身以及许多常用的数据科学库。

安装Anaconda

前往Anaconda官网下载对应操作系统的安装包,并按照指示完成安装。

验证安装

安装完成后,可以通过打开Anaconda Prompt并输入python --version来检查Python是否正确安装。

必备库介绍

进行数据分析时,有几个库是必不可少的,包括NumPy、Pandas、Matplotlib和SciPy等。

NumPy

NumPy是Python科学计算的基础库,提供了大量的数学函数以及高效处理大型数组的能力。

Pandas

Pandas是一个强大的数据分析库,提供了DataFrame数据结构,便于数据清洗、转换和分析。

Matplotlib

Matplotlib是一个用于绘制图表的库,可以用来可视化数据分析的结果。

SciPy

SciPy构建于NumPy之上,提供了大量的算法和数学常量。

数据导入与清洗

在进行数据分析之前,通常需要导入数据并对数据进行一定的预处理。

导入数据

使用Pandas的read_csv函数可以从CSV文件中读取数据。

import pandas as pd# 加载数据
df = pd.read_csv('data.csv')
清洗数据

数据清洗过程中可能会遇到缺失值、异常值等问题,需要使用合适的方法处理这些问题。

# 处理缺失值
df.dropna(inplace=True)

数据探索与分析

在数据清洗完毕后,下一步就是探索数据,寻找数据间的潜在关系。

描述性统计

利用Pandas提供的统计函数,可以轻松获得数据的基本统计信息。

print(df.describe())
相关性分析

通过计算数据间的相关系数,可以评估变量之间的线性关系。

print(df.corr())

数据可视化

可视化是数据分析的重要环节,它可以帮助我们直观地理解数据。

绘制直方图

使用Matplotlib可以方便地绘制各种图表。

import matplotlib.pyplot as pltplt.hist(df['age'], bins=20)
plt.show()

Python数据可视化示例

高级主题

掌握了基础知识之后,可以继续学习更高级的主题,如机器学习、深度学习等。

机器学习

Scikit-learn是一个非常流行且功能全面的机器学习库。

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(df[['age']], df['income'], test_size=0.2)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
深度学习

Keras是一个用于构建和训练深度学习模型的API。

from keras.models import Sequential
from keras.layers import Densemodel = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

使用Python进行数据分析的流程

总结

本教程介绍了如何使用Python进行数据分析的基本流程,包括环境搭建、数据导入与清洗、数据探索与分析以及数据可视化等内容。掌握了这些技能后,你将能够在真实世界的数据集中发掘有价值的信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/461565.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RabbitMQ + JMeter组合,优化你的中间件处理方式!

RabbitMQ是实现了高级消息队列协议(AMQP)的开源消息中间件,它是基于Erlang语言编写的,并发能力强,性能好,是目前主流的消息队列中间件之一。 RabbitMQ的安装可参照官网( https://www.rabbitmq.c…

python 爬虫 入门 五、抓取图片、视频

目录 一、图片、音频 二、下载视频: 一、图片、音频 抓取图片的手法在上一篇python 爬虫 入门 四、线程,进程,协程-CSDN博客里面其实有,就是文章中的图片部分,在那一篇文章,初始代码的28,29行…

Vulnhub靶机——DC-1

#环境 本次环境是利用VMware15搭建 靶机DC-1( https://download.vulnhub.com/dc/DC-1.zip) --192.168.200.131 Kali2021.1--192.168.200 将以上两个操作系统启动,并设置网卡为NAT模式 #信息收集 使用arp-scan对网段进行扫描,探测存活主机 使用nmap…

吴恩达深度学习笔记(10)12.

多任务学习 什么时候多任务学习有意义: 能从共享低级特征中获益;每个任务拥有的数据相当相似;训练一个足够大的神经网络用于所有任务。 目标定位: 分类定位(单个对象)与检测不同(多个对象&…

Android 音量调节流程分析

音量调节流程分析 按下音量键 音量键被按下后,按键事件会一路派发给Acitivity,如果无人拦截并处理,承载当前Activity的显示PhoneWindow类的onKeyDown()以及onKeyUp()函数将会被处理,从而开始通过音量键调整音量的处理流程&#x…

LLMs在股票投资组合崩溃中的时间关系推理

1. 引言 想象一下,你是一位投资经理,管理着一个多元化的股票投资组合。突然,一场前所未有的全球性事件发生了,比如2007年的金融危机或2020年的新冠疫情,这可能会对你的投资组合造成重大影响。传统的投资组合崩溃检测方…

o1驾驶无人机后空翻,OpenAI开发者日惊掉下巴!2分钟爆改代码写App

【导读】OpenAI伦敦开发者日上,首次曝出了o1五大核心能力,还有图像理解。o1两分钟构建应用驾驶无人机、电话订餐、讲解太阳系,现场演示让所有开发者沸腾。 完整版o1的解禁,离我们不远了! 就在刚刚举办的OpenAI伦敦开…

利用AWS服务轻松迁移数据上云

在数字化转型的浪潮中,越来越多的企业意识到将数据迁移至云端的重要性。云服务不仅能够提供更高的灵活性和可扩展性,还能显著降低IT成本。AWS(Amazon Web Services)作为全球领先的云服务提供商,为企业提供了一系列高效…

期货跟单、量化交易模拟演示系统

演示版可直接下载本文绑定资源。 一、跟单下单 在“排行榜”中选择要跟单的用户,合约可以跟全部,也可以指定跟该用户的某一合约操作,选定跟单的倍数(操作手数的倍数)/手数(指定手数,可以不是对…

界面控件DevExpress WPF中文教程:Data Grid——卡片视图概述

DevExpress WPF拥有120个控件和库,将帮助您交付满足甚至超出企业需求的高性能业务应用程序。通过DevExpress WPF能创建有着强大互动功能的XAML基础应用程序,这些应用程序专注于当代客户的需求和构建未来新一代支持触摸的解决方案。 无论是Office办公软件…

【数据结构二叉树】补充:C实现二叉树的层次遍历

1、层次遍历 按层次遍历二叉树的方式:按照“从上到下,从左到右”的顺序遍历二叉树,即先遍历二叉树的第一层的结点,然后是第二层的结点,直到最底层的结点,对每一层的遍历按照从左到右的次序进行。 2、层次…

供应商图纸外发:如何做到既安全又高效?

供应商跟合作伙伴、客户之间会涉及到图纸外发的场景,这是一个涉及数据安全、效率及合规性的重要环节。供应商图纸发送流程一般如下: 1.申请与审批 采购人员根据需要提出发放图纸的申请并提交审批; 采购部负责人审批发放申请,确…

MySQL 9从入门到性能优化-系统信息函数

【图书推荐】《MySQL 9从入门到性能优化(视频教学版)》-CSDN博客 《MySQL 9从入门到性能优化(视频教学版)(数据库技术丛书)》(王英英)【摘要 书评 试读】- 京东图书 (jd.com) MySQL9数据库技术_夏天又到了…

【第一个qt项目的实现和介绍以及程序分析】【正点原子】嵌入式Qt5 C++开发视频

qt项目的实现和介绍 1.第一个qt项目  (1).创建qt工程    [1].创建一个存放qt的目录    [2].新建一个qt工程    [3].编译第一个工程    发生错误时的解决方式 二.QT文件介绍  (1).工程中文件简单介绍  (2).项目文件代码流程介绍    [1].添…

推荐一款开源的免费PDF编辑工具:CubePDF Utility

CubePDF Utility是一款功能强大的开源免费PDF编辑器,它采用了基于缩略图的界面设计,为用户提供了直观且高效的PDF编辑体验。该软件特别针对那些希望以简单直观方式编辑 PDF 文件的用户而设计,支持多种操作,如合并、提取、拆分、更…

shodan7,shodan参数使用,常用端口,Google语法

参数使用 alert shodan alert -h(查看帮助文档 这个就是怎么去配置ip监控)我们能在web页面上面去做,而且更加方便,所以就不多讲了 info shodan info(查看你查询的扫描的一些次数每个账户都是每个月有限制次数的)domain shodan domain(查询域名信息…

不是她所期待的那个人

今天那,我又来写用AI小说辣。 从最初的喜欢到最后的讨厌,她对他的感觉经历了一段奇妙的变化。一开始,当她第一次看到他时,她被他的外表所吸引。他高大英俊,阳光活泼的笑容总是让她心生好感。她喜欢和他在一起的感觉&am…

智能合约分享

智能合约练习 一、solidity初学者经典示例代码: 1.存储和检索数据: // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // 声明 Solidity 编译器版本// 定义一个名为 SimpleStorage 的合约 contract SimpleStorage {// 声明一个公共状态变量 d…

硬件在环仿真建模之电路拓扑建模与数学建模

我们需要先明确一个问题,什么是电路拓扑式建模(后面简称拓扑建模)和数学建模? 电力电子系统的拓扑建模,从大类上都可以归入为物理式建模(Physics-Based Modeling),物理式建模的最大特点就是用户…

根据提交的二维数据得到mysql建表和插入数据实用工具

根据提交的二维数据得到mysql建表和插入数据实用工具,这是重构版本(之前有过)。 会通过数据的长度&#xff0c;类型&#xff0c;是否数字&#xff0c;是否唯一等做判断&#xff0c;且每千条一个插入语句以优化性能。 <?php //整理与分享&#xff1a;yujianyue<1505859…