基于CNN-LSTM的时间序列数据预测,15个输入1个输出,可以更改数据集,MATLAB代码

1. 数据收集与预处理

  • 数据清洗:处理缺失值、异常值等。
  • 特征工程:提取有助于预测的特征。
  • 数据标准化:将时间序列数据标准化,使其具有零均值和单位方差,有助于模型训练。
  • 滑动窗口划分:将时间序列数据划分为多个滑动窗口,每个窗口包含15个历史时间点的数据值,用于预测下一个时间点的值。
  • 数据集中部分数据如下:
0.491920000000000	0.493110000000000	0.493500000000000	0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000
0.493110000000000	0.493500000000000	0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000
0.493500000000000	0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000
0.493130000000000	0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000
0.493030000000000	0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000
0.493300000000000	0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000
0.494200000000000	0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000
0.493710000000000	0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000
0.496820000000000	0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000
0.517990000000000	0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000
0.520820000000000	0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000
0.519940000000000	0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000
0.526180000000000	0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000	0.561030000000000
0.539890000000000	0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000	0.561030000000000	0.561560000000000
0.539940000000000	0.544180000000000	0.546260000000000	0.548060000000000	0.546630000000000	0.555100000000000	0.563040000000000	0.579750000000000	0.565900000000000	0.563570000000000	0.564210000000000	0.560570000000000	0.558160000000000	0.561030000000000	0.561560000000000	0.560440000000000

2. 设计CNN-LSTM模型

在这里插入图片描述

3. 编译模型

  • 选择损失函数:对于回归问题,通常使用均方误差(MSE)作为损失函数。
  • 选择优化器:常用的优化器包括Adam、SGD等。
  • 选择评估指标:常用的评估指标包括均方根误差(RMSE)。

4. 训练模型

  • 划分数据集:将数据集划分为训练集、验证集和测试集。
  • 模型训练:使用训练集数据训练模型,并在验证集上进行模型评估,以防止过拟合。
  • 超参数调优:调整模型的超参数,如卷积核大小、卷积层数量、学习率等,以获得更好的性能。
    在这里插入图片描述

5. 模型评估与测试

  • 评估模型:在测试集上评估模型的性能,使用RMSE等指标。
  • 结果分析:分析模型预测结果与实际值之间的差异,评估模型的准确性和泛化能力。

在这里插入图片描述

在这里插入图片描述

6. 部分MATLAB示例

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
figure
scatter(T_train, T_sim1, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('训练集真实值');
ylabel('训练集预测值');
xlim([min(T_train) max(T_train)])
ylim([min(T_sim1) max(T_sim1)])
title('训练集预测值 vs. 训练集真实值')figure
scatter(T_test, T_sim2, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('测试集真实值');
ylabel('测试集预测值');
xlim([min(T_test) max(T_test)])
ylim([min(T_sim2) max(T_sim2)])
title('测试集预测值 vs. 测试集真实值')

7. 完整MATLAB代码见下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/466281.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

win 查看显卡支持 CUDA版本

在cmd 中执行 nvidia-smi 二、nvcc -V

Java算法OJ(6)归并分治

目录 1.前言 2.正文 2.1归并分治的概念 2.2计算数组的小和 2.2.1题目 2.2.2示例 2.2.3代码 2.3翻转对 2.3.1题目 2.3.2示例 2.3.3代码 3.小结 1.前言 哈喽大家好吖,今天继续来给大家带来Java算法——归并分治的讲解,学习这篇的前提可以先把…

QML项目实战:自定义Combox

目录 一.添加模块 import QtQuick.Controls 2.4 import QtQuick.Templates 2.4 as T import QtGraphicalEffects 1.15 import QtQuick 2.15 as T2 二.自定义Combox 1.combox文字显示 2.设置下拉图标显示 3.下拉框中选中背景设置 4.下拉框中选中文字设置 5.下拉框设置…

招聘系统哪个最好用?

在当今竞争激烈的商业环境中,企业为了保持竞争优势,对人才的需求愈发迫切。然而,面对海量的简历和繁杂的招聘流程,如何高效、精准地找到合适的人才,成为许多企业面临的难题。招聘系统因此应运而生,为企业提…

基于C语言实现的图书管理系统

使用Visual Studio 2022编译工具进行编写代码的。 项目源码直接奉上: book1.h头文件: #ifndef __BOOK1_H //预处理用于条件编译 避免头文件反复包含 #define __BOOK1_H#include<stdio.h> #include <string.h> #include<stdlib.h> #include<stdbool.h&g…

带你用Go实现二维码小游戏(下)

本篇文章我们进入项目最后的部署和监控搭建阶段&#xff0c;这一节会有很少的编码量&#xff0c;但是却能够带来最实用的知识和技术&#xff0c;快来阅读吧~ 5 Docker镜像打包部署 接下来就到了我们项目的部署阶段&#xff0c;优雅的项目必须要搭配优雅的部署方式&#xff01…

Sigrity Power SI 3D-EM Inductance Extraction模式如何进行电感的提取操作指导(一)

Sigrity Power SI 3D-EM Inductance Extraction模式如何进行电感的提取操作指导(一) Sigrity Power SI使用3D-EM Inductance Extraction模式可以进行电感的提取,以下图为例 2D 视图 <

shodan6-7---清风

shodan6-7 1.shodan网页版 以cve-2019-0708漏洞指纹特征为例 "\x03\x00\x00\x0b\x06\xd0\x00\x00\x124\x00"在这里插入图片描述 搜索命令参考 https://www.shodan.io/search/filters这个网页中有搜索关键词 对指定网址进行监控&#xff0c;这里可以对ip进行扫描&…

CPU算法分析LiteAIServer视频智能分析平台视频智能分析:抖动、过亮与过暗检测技术

随着科技的飞速发展&#xff0c;视频监控系统在各个领域的应用日益广泛。然而&#xff0c;视频质量的好坏直接影响到监控系统的效能&#xff0c;尤其是在复杂多变的光照条件下和高速数据传输中&#xff0c;视频画面常常出现抖动、过亮或过暗等问题&#xff0c;导致监控视频难以…

win11电脑无法找到声音输出设备怎么办?查看解决方法

电脑无法找到声音输出设备是一个常见的问题&#xff0c;尤其是在使用Windows操作系统时。幸运的是&#xff0c;大部分问题都可以通过以下几种方法来解决。 一、检查物理连接 在深入诊断之前&#xff0c;首先要检查硬件连接是否正常。这包括&#xff1a; 确保耳机、扬声器或其…

JS数据结构之“栈”、“队列”、“链表”

一、栈 JS中没有栈这种数据类型&#xff0c;创建栈其实是创建数组。push&#xff08;内容&#xff09;入栈&#xff1b;pop&#xff08;&#xff09;出栈&#xff1b; const stack []; stack.push(1); stack.push(2); const item1 stack.pop(); const item2 stack.pop(); …

【51单片机】串口通信原理 + 使用

学习使用的开发板&#xff1a;STC89C52RC/LE52RC 编程软件&#xff1a;Keil5 烧录软件&#xff1a;stc-isp 开发板实图&#xff1a; 文章目录 串口硬件电路UART串口相关寄存器 编码单片机通过串口发送数据电脑通过串口发送数据控制LED灯 串口 串口是一种应用十分广泛的通讯接…

嵌入式web开发:boa、lighttpd

嵌入式web开发&#xff1a;boa、lighttpd https://blog.csdn.net/m0_37105371/category_10937068.html BOA服务器的移植-CSDN博客 【第1部分&#xff1a;boa服务器部署到ubuntu里】 http://www.boa.org/boa-0.94.13.tar.gz tar xvzf boa-0.94.13.tar.gz cd boa-0.94.13/src/ a…

RC高通滤波器Bode图分析(传递函数零极点)

RC高通滤波器 我们使得R1K&#xff0c;C1uF&#xff1b;电容C的阻抗为Xc&#xff1b; 传递函数 H ( s ) u o u i R X C R R 1 s C R s R C 1 s R C &#xff08;其中 s j ω &#xff09; H(s)\frac{u_{o} }{u_{i} } \frac{R }{X_{C}R} \frac{R }{\frac{1}{sC}R} \fra…

Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户附数据代码

Python决策树、随机森林、朴素贝叶斯、KNN&#xff08;K-最近邻居&#xff09;分类分析银行拉新活动挖掘潜在贷款客户|附数据代码 最近我们被客户要求撰写关于银行拉新活动的研究报告&#xff0c;包括一些图形和统计输出。 项目背景&#xff1a;银行的主要盈利业务靠的是贷款&…

撰写开发信利器,高效工具助你赢在起点

ZohoCampaigns是电子邮件营销平台&#xff0c;提供创建、发送和分析邮件方案。其优势包括易用性、丰富模板、精准筛选、自动化和详细报告。外贸人员可用其高效发送开发信&#xff0c;追踪效果并优化策略&#xff0c;促进业务增长。 一、为什么选择Zoho Campaigns&#xff1f; …

协程5 --- 栈切换

文章目录 ucontext相关函数例子ucontext_t结构 setjump、longjump相关函数例子jmp_buf结构 汇编实现解析图示 ucontext 相关函数 #include <ucontext.h> int getcontext(ucontext_t *ucp);初始化ucp结构体&#xff0c;将当前上下文保存在ucp中。 int setcontext(const …

【Linux】Pinctrl子系统和GPIO子系统

Pinctrl子系统 在许多soc内部包含了多个pin控制器&#xff0c;通过pin控制器的寄存器&#xff0c;我们可以配置一个或者一组引脚的功能和特性。Linux内核为了统一各soc厂商的pin脚管理&#xff0c;提供了pinctrl子系统。该系统的作用&#xff1a; 在系统初始化的时候&#xf…

《Vue3 报错》Uncaught TypeError: s.finally is not a function

解决方案&#xff1a; 新建文件 my-polyfill.js // 当浏览器环境不支持Promise.prototype.finally if (!Promise.prototype[finally]) {Promise.prototype[finally] function(callback) {let P this.constructor;return this.then(value > P.resolve(callback()).then(…

RabbitMQ 七种工作模式介绍

目录 1.简单模式队列 2.WorkQueue(⼯作队列) 3 Publish/Subscribe(发布/订阅) 4 Routing(路由模式) 5.Topics(通配符模式) 6 RPC(RPC通信) 7 Publisher Confirms(发布确认) RabbitMQ 共提供了7种⼯作模式供我们进⾏消息传递,接下来一一介绍它的实现与目的 1.简单模式队列…