【LetMeFly】935.骑士拨号器:动态规划(DP)
力扣题目链接:https://leetcode.cn/problems/knight-dialer/
象棋骑士有一个独特的移动方式,它可以垂直移动两个方格,水平移动一个方格,或者水平移动两个方格,垂直移动一个方格(两者都形成一个 L 的形状)。
象棋骑士可能的移动方式如下图所示:
我们有一个象棋骑士和一个电话垫,如下所示,骑士只能站在一个数字单元格上(即蓝色单元格)。
给定一个整数 n,返回我们可以拨多少个长度为 n 的不同电话号码。
你可以将骑士放置在任何数字单元格上,然后你应该执行 n - 1 次移动来获得长度为 n 的号码。所有的跳跃应该是有效的骑士跳跃。
因为答案可能很大,所以输出答案模 109 + 7
.
示例 1:
输入:n = 1 输出:10 解释:我们需要拨一个长度为1的数字,所以把骑士放在10个单元格中的任何一个数字单元格上都能满足条件。
示例 2:
输入:n = 2 输出:20 解释:我们可以拨打的所有有效号码为[04, 06, 16, 18, 27, 29, 34, 38, 40, 43, 49, 60, 61, 67, 72, 76, 81, 83, 92, 94]
示例 3:
输入:n = 3131 输出:136006598 解释:注意取模
提示:
1 <= n <= 5000
解题方法:动态规划
使用 d p [ i ] dp[i] dp[i]代表当前这一步号码为 i i i时的总方案数,初始值 d p [ 0 ] = d p [ 1 ] = ⋯ = d p [ 9 ] = 0 dp[0] = dp[1] = \cdots = dp[9] = 0 dp[0]=dp[1]=⋯=dp[9]=0。
预先打表一个 c a n F r o m canFrom canFrom数组, c a n F r o m [ i ] canFrom[i] canFrom[i]代表能从哪些号码一步到达号码 i i i:
canFrom = {{4, 6}, // 0可以来自4,6{6, 8},{7, 9},{4, 8},{3, 9, 0},{},{1, 7, 0},{2, 6},{1, 3},{2, 4}
};
之后从第2个号码开始,假设当前号码为 i i i,则有状态转移方程:
d p [ i ] = s u m ( d p [ f r o m ] ) , f r o m ∈ c a n F r o m [ i ] dp[i] = sum(dp[from]), from \in canFrom[i] dp[i]=sum(dp[from]),from∈canFrom[i]
- 时间复杂度 O ( n ) O(n) O(n),其中常数比较大,为canFrom数组中的数据量20
- 空间复杂度 O ( 1 ) O(1) O(1)
AC代码
C++
const vector<vector<int>> canFrom = {{4, 6}, // 0可以来自4,6{6, 8},{7, 9},{4, 8},{3, 9, 0},{},{1, 7, 0},{2, 6},{1, 3},{2, 4}
};
const int mod = 1e9 + 7;class Solution {
public:int knightDialer(int n) {int last[10], now[10];fill(last, last + 10, 1);for (int i = 2; i <= n; i++) {memset(now, 0, sizeof(now));for (int j = 0; j < 10; j++) {for (int from : canFrom[j]) {now[j] = (now[j] + last[from]) % mod;}}memcpy(last, now, sizeof(now));}// return accumulate(last, last + 10, 0); // WA,这里没取模int ans = 0;for (int i = 0; i < 10; i++) {ans = (ans + last[i]) % mod;}return ans;}
};
Python
# AC,57.50%,56.76%
CAN_FROM = [[4, 6],[6, 8],[7, 9],[4, 8],[3, 9, 0],[], [1, 7, 0],[2, 6],[1, 3],[2, 4]
]
MOD = 1_000_000_007class Solution:def knightDialer(self, n: int) -> int:last = [1] * 10for _ in range(n - 1):now = [0] * 10for i in range(10):for j in CAN_FROM[i]:now[i] = (now[i] + last[j]) % MODlast = nowreturn sum(last) % MOD
Java
import java.util.Arrays;class Solution {private final int[][] canFrom = {{4, 6}, // 0可以来自4,6{6, 8},{7, 9},{4, 8},{3, 9, 0},{},{1, 7, 0},{2, 6},{1, 3},{2, 4}};private final int mod = 1000000007;public int knightDialer(int n) {int[] last = new int[10];int[] now = new int[10];Arrays.fill(last, 1);for (int i = 2; i <= n; i++) {for (int j = 0; j < 10; j++) {for (int from : canFrom[j]) {now[j] = (now[j] + last[from]) % mod;}}last = now;}int ans = 0;for (int i = 0; i < 10; i++) {ans = (ans + last[i]) % mod;}return ans;}
}
Go
package mainvar canFrom = [][]int{{4, 6}, // 0可以来自4,6{6, 8},{7, 9},{4, 8},{3, 9, 0},{},{1, 7, 0},{2, 6},{1, 3},{2, 4},
};
var mod = 1000000007func knightDialer(n int) (ans int) {last := make([]int, 10)for i := range last {last[i] = 1}for i := 2; i <= n; i++ {now := make([]int, 10)for j := 0; j < 10; j++ {for _, from := range canFrom[j] {now[j] = (now[j] + last[from]) % mod}}last = now}for i := range last {ans = (ans + last[i]) % mod;}return
}
同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/144375933