百篇论文纵览大型语言模型最新研究进展

 © 作者|王晓磊 

  机构|中国人民大学  

 方向 | 对话式信息获取  

来自 | RUC AI Box  

进NLP群—>加入NLP交流群(备注nips/emnlp/nlpcc进入对应投稿群)

本文整理了2022年以来发表在顶级会议上的大语言模型相关论文。

导读

去年底,OpenAI 推出的 ChatGPT 在短短数月内已经风靡全球。这个基于 GPT-3.5 的大型语言模型,具备惊人的自然语言生成和理解能力,可以像人类一样进行对话、翻译、摘要等任务。由于其优秀的表现,ChatGPT 及其背后的大型语言模型迅速成为人工智能领域的热门话题,吸引了广大科研人员和开发者的关注和参与。

本文整理了 2022 年在各大顶会(ACL、EMNLP、ICLR、ICML、NeurIPS等)发表的和大型语言模型相关的论文,共计 100 篇。论文列表已经同步更新到 Github仓库(https://github.com/RUCAIBox/Top-conference-paper-list),欢迎大家关注和 Star。

Catalog(目录)

  • Training【训练】

    • Pre-Training【预训练】

    • Instruction Tuning【指令微调】

  • Utilization【使用】

    • In-Context Learning【上下文学习】

    • Chain-of-Thought Prompting【思维链提示】

    • Compression【压缩】

    • Others【其他】

  • Application【应用】

    • Multi-Modal【多模态】

    • Code【代码】

    • Retrieval【检索】

    • Text Generation【文本生成】

    • Others【其他】

  • Analysis & Evaluation【分析与评测】

Training【训练】

Pre-Training【预训练】

  • UL2: Unifying Language Learning Paradigms

  • Learning to Grow Pretrained Models for Efficient Transformer Training

  • Efficient Large Scale Language Modeling with Mixtures of Experts

  • Knowledge-in-Context: Towards Knowledgeable Semi-Parametric Language Models

  • CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis

  • InCoder: A Generative Model for Code Infilling and Synthesis

  • CodeBPE: Investigating Subtokenization Options for Large Language Model Pretraining on Source Code

  • CodeRetriever: A Large Scale Contrastive Pre-Training Method for Code Search

  • UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining

  • GLM-130B: An Open Bilingual Pre-trained Model

  • When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain

Instruction Tuning【指令微调】

  • What Makes Instruction Learning Hard? An Investigation and a New Challenge in a Synthetic Environment

  • InstructDial: Improving Zero and Few-shot Generalization in Dialogue through Instruction Tuning

  • Learning Instructions with Unlabeled Data for Zero-Shot Cross-Task Generalization

  • Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks

  • Boosting Natural Language Generation from Instructions with Meta-Learning

  • Help me write a Poem - Instruction Tuning as a Vehicle for Collaborative Poetry Writing

  • Multitask Instruction-based Prompting for Fallacy Recognition

  • Not All Tasks Are Born Equal: Understanding Zero-Shot Generalization

  • HypeR: Multitask Hyper-Prompted Training Enables Large-Scale Retrieval Generalization

Utilization【使用】

In-Context Learning【上下文学习】

  • What learning algorithm is in-context learning? Investigations with linear models

  • Ask Me Anything: A simple strategy for prompting language models

  • Large Language Models are Human-Level Prompt Engineers

  • Using Both Demonstrations and Language Instructions to Efficiently Learn Robotic Tasks

  • kNN Prompting: Beyond-Context Learning with Calibration-Free Nearest Neighbor Inference

  • Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-Shot Learners

  • Selective Annotation Makes Language Models Better Few-Shot Learners

  • Active Example Selection for In-Context Learning

  • Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?

  • In-Context Learning for Few-Shot Dialogue State Tracking

  • Few-Shot Anaphora Resolution in Scientific Protocols via Mixtures of In-Context Experts

  • ProGen: Progressive Zero-shot Dataset Generation via In-context Feedback

  • Controllable Dialogue Simulation with In-context Learning

  • Thinking about GPT-3 In-Context Learning for Biomedical IE? Think Again

  • XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for Cross-lingual Text-to-SQL Semantic Parsing

  • On the Compositional Generalization Gap of In-Context Learning

  • Towards In-Context Non-Expert Evaluation of Reflection Generation for Counselling Conversations

  • Towards Few-Shot Identification of Morality Frames using In-Context Learning

Chain-of-Thought Prompting【思维链提示】

  • ReAct: Synergizing Reasoning and Acting in Language Models

  • Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning

  • Neuro-Symbolic Procedural Planning with Commonsense Prompting

  • Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought

  • PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales

  • Decomposed Prompting: A Modular Approach for Solving Complex Tasks

  • Complexity-Based Prompting for Multi-step Reasoning

  • Automatic Chain of Thought Prompting in Large Language Models

  • Compositional Semantic Parsing with Large Language Models

  • Self-Consistency Improves Chain of Thought Reasoning in Language Models

  • Least-to-Most Prompting Enables Complex Reasoning in Large Language Models

  • Entailer: Answering Questions with Faithful and Truthful Chains of Reasoning

  • Iteratively Prompt Pre-trained Language Models for Chain of Thought

  • ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational Finance Question Answering

  • Induced Natural Language Rationales and Interleaved Markup Tokens Enable Extrapolation in Large Language Models

Compression【压缩】

  • Understanding and Improving Knowledge Distillation for Quantization Aware Training of Large Transformer Encoders

  • The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models

  • AlphaTuning: Quantization-Aware Parameter-Efficient Adaptation of Large-Scale Pre-Trained Language Models

Others【其他】

  • BBTv2: Towards a Gradient-Free Future with Large Language Models

  • Compositional Task Representations for Large Language Models

  • Just Fine-tune Twice: Selective Differential Privacy for Large Language Models

Application【应用】

Multi-Modal【多模态】

  • Visual Classification via Description from Large Language Models

  • Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language

  • Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pretrained Models with Zero Training

Code【代码】

  • DocPrompting: Generating Code by Retrieving the Docs

  • Planning with Large Language Models for Code Generation

  • CodeT: Code Generation with Generated Tests

  • Language Models Can Teach Themselves to Program Better

Retrieval【检索】

  • Promptagator: Few-shot Dense Retrieval From 8 Examples

  • Recitation-Augmented Language Models

  • Generate rather than Retrieve: Large Language Models are Strong Context Generators

  • QUILL: Query Intent with Large Language Models using Retrieval Augmentation and Multi-stage Distillation

Text Generation【文本生成】

  • Generating Sequences by Learning to Self-Correct

  • RankGen: Improving Text Generation with Large Ranking Models

  • Eliciting Knowledge from Large Pre-Trained Models for Unsupervised Knowledge-Grounded Conversation

Others【其他】

  • Systematic Rectification of Language Models via Dead-end Analysis

  • Reward Design with Language Models

  • Bidirectional Language Models Are Also Few-shot Learners

  • Composing Ensembles of Pre-trained Models via Iterative Consensus

  • Binding Language Models in Symbolic Languages

  • Mind's Eye: Grounded Language Model Reasoning through Simulation

Analysis & Evaluation【分析与评测】

  • WikiWhy: Answering and Explaining Cause-and-Effect Questions

  • ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning

  • Quantifying Memorization Across Neural Language Models

  • Mass-Editing Memory in a Transformer

  • Multi-lingual Evaluation of Code Generation Models

  • STREET: A MULTI-TASK STRUCTURED REASONING AND EXPLANATION BENCHMARK

  • Leveraging Large Language Models for Multiple Choice Question Answering

  • Broken Neural Scaling Laws

  • Language models are multilingual chain-of-thought reasoners

  • Language Models are Realistic Tabular Data Generators

  • Task Ambiguity in Humans and Language Models

  • Discovering Latent Knowledge in Language Models Without Supervision

  • Prompting GPT-3 To Be Reliable

  • Large language models are few-shot clinical information extractors

  • How Large Language Models are Transforming Machine-Paraphrase Plagiarism

  • Neural Theory-of-Mind? On the Limits of Social Intelligence in Large LMs

  • SLING: Sino Linguistic Evaluation of Large Language Models

  • A Systematic Investigation of Commonsense Knowledge in Large Language Models

  • Lexical Generalization Improves with Larger Models and Longer Training

  • What do Large Language Models Learn beyond Language?

  • Probing for Understanding of English Verb Classes and Alternations in Large Pre-trained Language Models


进NLP群—>加入NLP交流群(备注nips/emnlp/nlpcc进入对应投稿群)

持续发布自然语言处理NLP每日优质论文解读、相关一手资料、AI算法岗位等最新信息。

加入星球,你将获得:

1. 每日更新3-5篇最新最优质的的论文速读

2. 最新入门和进阶学习资料

4. 每日1-3个NLP、搜广推、CV等AI岗位招聘信息

ed58a82e0b5d0ec4640aa8ddd3a91174.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/57921.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

#论文阅读# MORAN

论文地址:https://arxiv.org/pdf/1901.03003.pdf 代码地址:MORANv2-pytorch版本 1 abstract 不规则文本识别由于有着各种各样的形状,因此仍有较大的困难,本文提出MORAN:包含一个多目标蒸馏网络(multi-obj…

论文阅读_MAE

论文信息 name_en: Masked Autoencoders Are Scalable Vision Learners name_ch: 带遮蔽的自编码器是大规模的视觉学习者 paper_addr: https://ieeexplore.ieee.org/document/9879206/ doi: 10.1109/CVPR52688.2022.01553 date_read: 2023-04-08 date_publish: 2022-06-01 tag…

eval有时候也可以用,而且有奇效

ChatGPT取代程序员还是给程序员加Buff? 这两周,AI新闻一个接着一个,3月23日,Google开放了内测已久的AI对话服务Bard,Google强调,这是一款定位为用户提供创意之源的产品,可生成写作草稿或生活中…

chatgpt赋能python:Python数据散点图:用于数据可视化的强大工具

Python数据散点图:用于数据可视化的强大工具 数据可视化是将数据转化为图表或图形的过程,以使人们更容易理解和解释数据。散点图是一个强大的数据可视化工具,可以使用Python来制作。 什么是散点图 散点图是一种在二维平面上以点的形式展示…

chatgpt赋能python:PythonU盘:如何使用Python为U盘增加更多功能

Python U盘:如何使用Python为U盘增加更多功能 Python已经成为了世界上使用最广泛和最流行的编程语言之一。它具有易于上手,简洁明了的语法,以及强大的库和工具生态系统,使得Python在开发各种不同类型的应用程序和系统时非常受欢迎…

缓存那些事

作者:熊明辉,美团点评酒旅事业群酒店住宿研发团队B端商家业务平台负责人,主导构建商家业务平台系统,支撑美团点评酒店住宿业务的飞速发展需求。曾任职于联想集团、百度。 责编:钱曙光,关注架构和算法领域&a…

《程序员》3月精彩内容:大数据技术辨析与深度实践

随着技术迭代的不断加速,大数据极大改变了行业领域对信息流动的限制。本期封面报道聚焦领域内热门技术与应用实践,带领大家深度解析大数据技术难点和发展趋势。厉兵秣马今点将,群雄逐鹿正当时——本期精彩不容错过。 探讨数据时代构建高可用…

关于缓存

作者:熊明辉,美团点评酒旅事业群酒店住宿研发团队B端商家业务平台负责人,主导构建商家业务平台系统,支撑美团点评酒店住宿业务的飞速发展需求。曾任职于联想集团、百度。 责编:钱曙光,关注架构和算法领域&…

旅游推荐系统的演进

作者:郑刚,美团点评高级技术专家。2010年毕业于中科院计算所,2011年加入美团,参与美团早期数据平台搭建,先后负责平台、酒旅数据仓库和数据产品建设,目前在酒旅事业群数据研发中心,重点负责酒店…

逻辑学 导论1

2010 中山大学大一新生的导论课,熊明辉视频46节每节22分钟左右,以前居然没看过,先看前6章 在中国大学MOOC上有 李静 的课程,不太一样 大学生和中学生最主要的区别是什么?就是学习要主动。 第一章 引论 4个问题 逻辑学…

大连工业大学计算机科学与技术在哪个学院,大连工业大学信息科学与工程学院到计算机与软件工程学院交流...

1月11日,大连工业大学信息科学与工程学院副院长于晓强一行到计算机与软件工程学院调研。计算机与软件工程学院院长何明星、副院长杜亚军及学院各系、办公室相关老师参加了此次交流会。双方在6A519进行了两个多小时的热烈研讨与交流。 何明星代表学院向到访的于晓强一…

ChatGPT刷力扣面试题01.01:判定字符是否唯一

Java解法: 方法一:我们可以使用一个HashSet来存储已经遍历过的字符,如果遍历到的字符已经存在于HashSet中,则说明字符串中有重复字符,返回false;否则,将字符加入HashSet中。最后,如果…

ChatGPT 最强助攻书单

GPT 是否有人的智能?昨晚,科学作家万维钢与图灵联合创始人刘江老师在图灵社区直播间进行了一场深入的对话探讨,这是我们系列直播的第二场,围观人数超过30000!没来得及看的小伙伴可以去图灵社区视频号观看回放&#xff…

CiteSpace多数据库一键去重-知网、万方、维普数据库

看完本文你将学会利用CiteSpace、Ucinet、Vosviewer、gephi等文献计量与可视化软件同时处理知网、万方、维普数据库,结果更加客观、科学、权威! ​ 目前,我们利用可视化软件,诸如CiteSpace、Ucinet、Vosviewer、gephi、pajek等处理…

广告投放黑科技Cloak

广告投放黑科技:什么是Cloak,Cloak的原理是什么? 一、Cloak/Cloaking是什么意思? 很多人一定对Cloak/Cloaking这个英文单词产生疑问,或者很多人是第一次听这个词,究竟这个词是什么意思?其实&a…

英文SEO站群操作模式介绍

英文站群,是指一个人批量做了很多站,统一操作一批网站,这个就叫站群。 站群是非常好的英文SEO引流手段,一但英文站群打造完毕,你就能获得持续稳定的流量。 很多人通过英文SEO站群,仅仅是做联盟广告&#xf…

外贸独立站谷歌SEO做外链常见的100个问题总结

外贸独立站谷歌SEO做外链常见的100个问题总结 For the next 21 days,you can explore Freshsales for free.Here are a few steps to get you started Import your data or migrate from another CRM 2-way email sync for a seamless communicationFor the next 21 days,you …

采用预训练模型来训练新的模型

一、为什么需要使用预训练模型? 当可用的数据集较少时,我们从头开始训练的自己的卷积神经网络,想要将模型的精度会十分困难,如果我们想要进一步提高精度,因此下一步我们需要使用预训练的模型。 想要将深度学习应用于…

【国际知名-hacker`动态`】洞悉-最新 hacker技术 新闻

国际知名-黑客动态 1、【导读】黑客 最新 技术&新闻 平台 2、【动态】每日必看的朋友圈 3、【多看看】跳出舒适圈,你要学的还有很多 ​ The Hacker News 报道黑客攻击、网络安全、科技新闻(内容深入浅出>提供及时、可靠的信息) 链接&#xff1a…

PoseiSwap 参赛,参与斯坦福、Nautilus等联合主办的 Hackathon 活动

近日,由 Stanford Blockchain Accelerator、Zebec Protocol、 Nautilus Chain、Rootz Lab 共同主办的“ Boundless Hackathon Stanford ” 主题的黑客松活动,目前已接受报名。该活动旨在帮助更多的优质开发者参与到 Web3 世界的发展中,推动链…