注:蓝色字体为说明备注解释字体,不能出现在大家的论文里。黑色字体为论文部分,大家可以根据红色字体的注记进行摘抄。该文件为半成品论文,即引导大家每一步做什么,怎么做,展示按着本团队的解题思路进行建模的计算结果。
预计今晚发布的成品论文,即可以直接提交的论文,会进行展示。很多人都会拿到成品论文,直接提交一定会查重不过关。成品论文是按着半成品论文以及之前的解题思路写出的,如果不对外展示,直接提交100%获奖的文章。进行展示的目的,及为了让辅助大家写论文,也让大家知道获奖的话应该要比展示的这篇成品论文要更好一些。
组委会要求重要格式规范
题目不用自拟
无目录
第二页为赛题题目、摘要和关键词(摘要、关键词无需译成英文),注意:摘要篇幅不能超过一页。
正文从第三页开始,正文控制在25页以内,附录页数不限
注意:不符合格式规范的论文将被视为违反竞赛规则,取消评奖资格,论文中出现竞赛队员和参赛学校等信息该论文作废。
人工智能对大学生学习影响的评价
摘 要
自1956年人工智能概念提出后,相关技术快速发展。近年来随着文言一心、new bing、chatGPT等人工智能新产品问世后,对各行各业产生了不同程度的影响。2023年3月,据统计美国已经有90%的学生使用chatGPT辅助完成作业。因此,本文将基于给出的人工智能相关调查问卷以及结果,对人工智能对大学生学习影响情况进行分析。
问题一,首先对于问卷结果进行分析。基于本文的研究侧重点,对调查问卷进行修改,剔除对研究没有太多意义的问题。对数据集,进行缺失值异常值判定,剔除异常数据样本。之后,对问卷进行效度信度检验。将调查问卷问题分为调查者基本信息、调查者学习情况、调查者对人工智能态度、人工智能发展四个部分进行分析。对于问卷结果进行编码,对不同的问题下,对应的问题回答设置不同的数值变量,完成调查问卷问卷结果的数值化处理。
问题二,根据问题一调查问卷的结果,设置调查者基本信息、调查者学习情况、调查者对人工智能态度、人工智能发展四个一级指标,对应的在一级指标下根据问卷设置二级指标。初步设置后,分析一级指标下,对应所属的二级指标之间的相关性、关联性,以论述指标选取的合理性。最终,根据分析结果,构建指标评价体系。
问题三,将所构建指标体系涉及数据进行KMO检验和和Bartlett球形检验,对于通过检验的一级指标,使用主成分分析法进行降维,对于未通过主成分分析法的指标,使用t-SNE方法降维。最终,将四个一级指标降维数据汇总,构建基于优劣解距离法 TOPSIS法进行综合评价,对最终得分进行排序。对排名靠前的人群,即受人工智能影响较大的人群,进行公共特征提取,从而得出给出明确、有说服力的结论。
问题四,基于建立的综合评价模型得出的结论,以及调查问卷的结果。撰写非技术性文章,对人工智能对大学生学习影响从积极、消极以及未来发展三个方面进行描述。
关键词:数值化处理、降维、质量检验、主成分分析、t-SNE、特征提取
注:降维方法,对于未能通过检验的可以使用很多方法,t-sne仅仅是一种。如果大家不好掌握,可以使用topsis理想解法、熵权法、RSR等根据队伍对模型的掌握情况来就可以,这些模型实现代码之前的文件中都有给出