深度学习经典入门项目—波士顿房价预测

目录

  • 房价预测--线性回归
    • 数据处理
      • 数据形状变换
      • 数据集划分
      • 数据归一化处理
      • housing.data数据格式
    • 模型设计
      • 线性回归模型设计
    • 训练配置
    • 训练过程
    • 保存并测试模型
      • 保存模型
      • 测试模型

房价预测–线性回归

波士顿房价预测数据集是经典的机器学习、深度学习入门的数据集。下面我们用这个数据集完成房价预测任务。

学习目标:
1.了解深度学习框架编写代码的基本套路;
2.了解线性回归任务的基本模式;

#加载飞桨、Numpy和相关类库
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph import Linear
import numpy as np
import os
import random

代码中参数含义如下:

  • paddle/fluid:飞桨的主库,目前大部分的实用函数均在paddle.fluid包内。
  • dygraph:动态图的类库。
  • Linear:神经网络的全连接层函数,即包含所有输入权重相加和激活函数的基本神经元结构。在房价预测任务中,使用只有一层的神经网络(全连接层)来实现线性回归模型。


说明:

飞桨支持两种深度学习建模编写方式,更方便调试的动态图模式和性能更好并便于部署的静态图模式。

  • 静态图模式(声明式编程范式,类比C++):先编译后执行的方式。用户需预先定义完整的网络结构,再对网络结构进行编译优化后,才能执行获得计算结果。
  • 动态图模式(命令式编程范式,类比Python):解析式的执行方式。用户无需预先定义完整的网络结构,每写一行网络代码,即可同时获得计算结果。

为了学习模型和调试的方便,本教程均使用动态图模式编写模型。在后续的资深教程中,会详细介绍静态图以及将动态图模型转成静态图的方法。仅在部分场景下需要模型转换,并且是相对容易的。


数据处理

数据处理包含五个部分:数据导入、数据形状变换、数据集划分、数据归一化处理和封装load data函数。数据预处理后,才能被模型调用。
数据处理的代码不依赖框架实现,直接使用 python 来完成任务。

数据形状变换

由于读入的原始数据是1维的,所有数据都连在一起。因此需要我们将数据的形状进行变换,形成一个2维的矩阵,每行为一个数据样本(14个值),每个数据样本包含13个X(影响房价的特征)和一个Y(该类型房屋的均价)。

数据集划分

将数据集划分成训练集和测试集,其中训练集用于确定模型的参数,测试集用于评判模型的效果。为什么要对数据集进行拆分,而不能直接应用于模型训练呢?这与学生时代的授课和考试关系比较类似。

上学时总有一些自作聪明的同学,平时不认真学习,考试前临阵抱佛脚,将习题死记硬背下来,但是成绩往往并不好。因为学校期望学生掌握的是知识,而不仅仅是习题本身。另出新的考题,才能鼓励学生努力去掌握习题背后的原理。同样我们期望模型学习的是任务的本质规律,而不是训练数据本身,模型训练未使用的数据,才能更真实的评估模型的效果。

在本案例中,我们将80%的数据用作训练集,20%用作测试集,实现代码如下。通过打印训练集的形状,可以发现共有404个样本,每个样本含有13个特征和1个预测值。

数据归一化处理

对每个特征进行归一化处理,使得每个特征的取值缩放到0~1之间。这样做有两个好处:一是模型训练更高效;二是特征前的权重大小可以代表该变量对预测结果的贡献度(因为每个特征值本身的范围相同)。

def load_data():# 从文件导入数据datafile = './work/housing .data'data = np.fromfile(datafile, sep=' ')# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]feature_num = len(feature_names)# 将原始数据进行Reshape,变成[N, 14]这样的形状data = data.reshape([data.shape[0] // feature_num, feature_num])# 将原数据集拆分成训练集和测试集# 这里使用80%的数据做训练,20%的数据做测试# 测试集和训练集必须是没有交集的ratio = 0.8offset = int(data.shape[0] * ratio)training_data = data[:offset]# 计算train数据集的最大值,最小值,平均值maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \training_data.sum(axis=0) / training_data.shape[0]# 记录数据的归一化参数,在预测时对数据做归一化global max_valuesglobal min_valuesglobal avg_valuesmax_values = maximumsmin_values = minimumsavg_values = avgs# 对数据进行归一化处理for i in range(feature_num):#print(maximums[i], minimums[i], avgs[i])data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])# 训练集和测试集的划分比例#ratio = 0.8#offset = int(data.shape[0] * ratio)training_data = data[:offset]test_data = data[offset:]return training_data, test_data

housing.data数据格式

在这里插入图片描述
百度网盘下载链接如下:
链接: https://pan.baidu.com/s/1ShQ7FxyatK_akkfGWOKApQ
密码: 3lbj

模型设计

模型设计是深度学习模型关键要素之一,也称为网络结构设计,相当于模型的假设空间,即实现模型“前向计算”(从输入到输出)的过程。模型定义的实质是定义线性回归的网络结构,飞桨建议通过创建Python类的方式完成模型网络的定义,即定义init函数和forward函数。forward函数是框架指定实现前向计算逻辑的函数,程序在调用模型实例时会自动执行forward方法。在forward函数中使用的网络层需要在init函数中声明。

实现过程分如下两步:

  1. 定义init函数:在类的初始化函数中声明每一层网络的实现函数。在房价预测模型中,只需要定义一层全连接层。
  2. 定义forward函数:构建神经网络结构,实现前向计算过程,并返回预测结果,在本任务中返回的是房价预测结果。

线性回归模型设计

如果将输入特征和输出预测值均以向量表示,输入特征 x x x有13个分量, y y y有1个分量,那么参数权重的形状(shape)是 13 × 1 13\times1 13×1。假设我们以如下任意数字赋值参数做初始化:
w = [ 0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.7 , 0.8 , − 0.1 , − 0.2 , − 0.3 , − 0.4 , 0.0 ] w=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, -0.1, -0.2, -0.3, -0.4, 0.0] w=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.1,0.2,0.3,0.4,0.0]

假设房价和各影响因素之间能够用线性关系来描述:

y = ∑ j = 1 M x j w j + b y = {\sum_{j=1}^Mx_j w_j} + b y=j=1Mxjwj+b

模型的求解即是通过数据拟合出每个 w j w_j wj b b b。其中, w j w_j wj b b b分别表示该线性模型的权重和偏置。一维情况下, w j w_j wj b b b 是直线的斜率和截距。

线性回归模型使用均方误差作为损失函数(Loss),用以衡量预测房价和真实房价的差异,公式如下:

M S E = 1 n ∑ i = 1 n ( Y i ^ − Y i ) 2 MSE = \frac{1}{n} \sum_{i=1}^n(\hat{Y_i} - {Y_i})^{2} MSE=n1i=1n(Yi^Yi)2

class Regressor(fluid.dygraph.Layer):def __init__(self):super(Regressor, self).__init__()# 定义一层全连接层,输出维度是1,激活函数为None,即不使用激活函数self.fc = Linear(input_dim=13, output_dim=1, act=None)# 网络的前向计算函数def forward(self, inputs):x = self.fc(inputs)return x

训练配置

训练配置过程包含四步:


  1. guard函数指定运行训练的机器资源,表明在with作用域下的程序均执行在本机的CPU资源上。dygraph.guard表示在with作用域下的程序会以飞桨动态图的模式执行(实时执行)。
  2. 声明定义好的回归模型Regressor实例,并将模型的状态设置为训练。
  3. 使用load_data函数加载训练数据和测试数据。
  4. 设置优化算法和学习率,优化算法采用随机梯度下降SGD,学习率设置为0.01。

训练配置代码如下所示:

# 定义飞桨动态图的工作环境
with fluid.dygraph.guard():# 声明定义好的线性回归模型model = Regressor()# 开启模型训练模式model.train()# 加载数据training_data, test_data = load_data() # 定义优化算法,这里使用随机梯度下降-SGD# 学习率设置为0.01opt = fluid.optimizer.SGD(learning_rate=0.01, parameter_list=model.parameters())

说明:

  1. 默认本案例运行在读者的笔记本上,因此模型训练的机器资源为CPU。
  2. 模型实例有两种状态:训练状态.train()和预测状态.eval()。训练时要执行正向计算和反向传播梯度两个过程,而预测时只需要执行正向计算。为模型指定运行状态,有两点原因:

(1)部分高级的算子(例如Drop out和Batch Normalization,在计算机视觉的章节会详细介绍)在两个状态执行的逻辑不同。

(2)从性能和存储空间的考虑,预测状态时更节省内存,性能更好。

  1. 在上述代码中可以发现声明模型、定义优化器等操作都在with创建的 fluid.dygraph.guard()上下文环境中进行,可以理解为with fluid.dygraph.guard()创建了飞桨动态图的工作环境,在该环境下完成模型声明、数据转换及模型训练等操作。

训练过程

训练过程采用二层循环嵌套方式:

  • 内层循环: 负责整个数据集的一次遍历,采用分批次方式(batch)。假设数据集样本数量为1000,一个批次有10个样本,则遍历一次数据集的批次数量是1000/10=100,即内层循环需要执行100次。

      for iter_id, mini_batch in enumerate(mini_batches):
    
  • 外层循环: 定义遍历数据集的次数,通过参数EPOCH_NUM设置。

      for epoch_id in range(EPOCH_NUM):
    

说明:

batch的取值会影响模型训练效果。batch过大,会增大内存消耗和计算时间,且效果并不会明显提升;batch过小,每个batch的样本数据将没有统计意义。由于房价预测模型的训练数据集较小,我们将batch为设置10。


每次内层循环都需要执行如下四个步骤。


  1. 数据准备:将一个批次的数据转变成np.array和内置格式。
  2. 前向计算:将一个批次的样本数据灌入网络中,计算输出结果。
  3. 计算损失函数:以前向计算结果和真实房价作为输入,通过损失函数square_error_cost计算出损失函数值(Loss)。飞桨所有的API接口都有完整的说明和使用案例。
  4. 反向传播:执行梯度反向传播backward函数,即从后到前逐层计算每一层的梯度,并根据设置的优化算法更新参数opt.minimize

因为计算损失时需要把每个样本的损失都考虑到,所以我们需要对单个样本的损失函数进行求和,并除以样本总数 N N N
L = 1 N ∑ i ( y i − z i ) 2 L= \frac{1}{N}\sum_i{(y_i - z_i)^2} L=N1i(yizi)2

with dygraph.guard(fluid.CPUPlace()):EPOCH_NUM = 10   # 设置外层循环次数BATCH_SIZE = 10  # 设置batch大小# 定义外层循环for epoch_id in range(EPOCH_NUM):# 在每轮迭代开始之前,将训练数据的顺序随机的打乱np.random.shuffle(training_data)# 将训练数据进行拆分,每个batch包含10条数据mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]# 定义内层循环for iter_id, mini_batch in enumerate(mini_batches):x = np.array(mini_batch[:, :-1]).astype('float32') # 获得当前批次训练数据y = np.array(mini_batch[:, -1:]).astype('float32') # 获得当前批次训练标签(真实房价)# 将numpy数据转为飞桨动态图variable形式house_features = dygraph.to_variable(x)prices = dygraph.to_variable(y)# 前向计算predicts = model(house_features)# 计算损失loss = fluid.layers.square_error_cost(predicts, label=prices)avg_loss = fluid.layers.mean(loss)if iter_id%20==0:print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))# 反向传播avg_loss.backward()# 最小化loss,更新参数opt.minimize(avg_loss)# 清除梯度model.clear_gradients()# 保存模型fluid.save_dygraph(model.state_dict(), 'LR_model')

保存并测试模型

保存模型

将模型当前的参数数据model.state_dict()保存到文件中(通过参数指定保存的文件名 LR_model),以备预测或校验的程序调用,代码如下所示。

# 定义飞桨动态图工作环境
with fluid.dygraph.guard():# 保存模型参数,文件名为LR_modelfluid.save_dygraph(model.state_dict(), 'LR_model')print("模型保存成功,模型参数保存在LR_model中")

理论而言,直接使用模型实例即可完成预测,而本教程中预测的方式为什么是先保存模型,再加载模型呢?这是因为在实际应用中,训练模型和使用模型往往是不同的场景。模型训练通常使用大量的线下服务器(不对外向企业的客户/用户提供在线服务),而模型预测则通常使用线上提供预测服务的服务器,或者将已经完成的预测模型嵌入手机或其他终端设备中使用。因此本教程的讲解方式更贴合真实场景的使用方法。
飞桨的愿景是用户只需要了解模型的逻辑概念,不需要关心实现细节,就能搭建强大的模型。

测试模型

下面我们选择一条数据样本,测试下模型的预测效果。测试过程和在应用场景中使用模型的过程一致,主要可分成如下三个步骤:

  1. 配置模型预测的机器资源。本案例默认使用本机,因此无需写代码指定。
  2. 将训练好的模型参数加载到模型实例中。由两个语句完成,第一句是从文件中读取模型参数;第二句是将参数内容加载到模型。加载完毕后,需要将模型的状态调整为eval()(校验)。上文中提到,训练状态的模型需要同时支持前向计算和反向传导梯度,模型的实现较为臃肿,而校验和预测状态的模型只需要支持前向计算,模型的实现更加简单,性能更好。
  3. 将待预测的样本特征输入到模型中,打印输出的预测结果。

通过load_one_example函数实现从数据集中抽一条样本作为测试样本,具体实现代码如下所示。

def load_one_example(data_dir):f = open(data_dir, 'r')datas = f.readlines()# 选择倒数第10条数据用于测试tmp = datas[-10]tmp = tmp.strip().split()one_data = [float(v) for v in tmp]# 对数据进行归一化处理for i in range(len(one_data)-1):one_data[i] = (one_data[i] - avg_values[i]) / (max_values[i] - min_values[i])data = np.reshape(np.array(one_data[:-1]), [1, -1]).astype(np.float32)label = one_data[-1]return data, label
with dygraph.guard():# 参数为保存模型参数的文件地址model_dict, _ = fluid.load_dygraph('LR_model')model.load_dict(model_dict)model.eval()# 参数为数据集的文件地址test_data, label = load_one_example('./work/housing .data')# 将数据转为动态图的variable格式test_data = dygraph.to_variable(test_data)results = model(test_data)# 对结果做反归一化处理results = results * (max_values[-1] - min_values[-1]) + avg_values[-1]print("Inference result is {}, the corresponding label is {}".format(results.numpy(), label))

通过比较“模型预测值”和“真实房价”可见,模型的预测效果与真实房价接近。房价预测仅是一个最简单的模型,使用飞桨编写均可事半功倍。那么对于工业实践中更复杂的模型,使用飞桨节约的成本是不可估量的。同时飞桨针对很多应用场景和机器资源做了性能优化,在功能和性能上远强于自行编写的模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/69770.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

本周AI热点回顾:波士顿动力机器狗去新西兰放羊了、微软WSL将支持GPU、ERNIE-GEN刷新SOTA

01 波士顿动力机器狗去新西兰放羊了!网友:不努力连狗都不如 波士顿动力的科学家可能做梦也没想到,他们研制出来的Spot机械狗,刚刚商用,就被训练来放羊了。 新西兰,一个因为牛奶和羊毛被中国人熟知的国家&am…

机器学习项目实践——波士顿房价预测

基于线性回归预测波士顿房价 摘要:分类和回归属于机器学习领域有监督学习算法的两种方法,有监督学习是通过已有的训练样本去训练得到一个模型,再使用这个模型将所有的输入映射到相应的输出,若输出结果是离散型称为分类&#xff0…

起底网红机器人波士顿动力

关注网易智能,聚焦AI大事件,读懂下一个大时代! 这家“网红”机器人公司又火了。 最近,接连发布的两条波士顿动力机器人的最新视频让不少人感到惊讶,一段是发布于今年10月11日标题为“跑酷阿特拉斯”的视频,…

重磅干货!揭秘波士顿动力背后的专利技术

【导读】本文从波士顿动力背后申请的专利入手,从动力系统、步态分析,详细探讨了波士顿动力机器人背后的技术实现。 波士顿动力四足机器人的发展历程(前世今身) 相比于轮式或履带机器人,波士顿足式机器人具有更强的地形适应能力,身体十分灵活,可以在各种崎岖不平的地面行…

机器学习实战演练 波士顿房价预测与模型评估

介绍数据集: 本数据集共有506个样本,每个样本有13个特征及标签MEDV 特征信息: CRIM 城镇人均犯罪率 ZN 占地面积超过2.5万平方英尺的住宅用地比例 INDUS 城镇非零售业务地区的比例 CHAS 查尔斯河虚拟变量 ( 1 如果土地在河边;否则…

这就是波士顿动力第一款商用产品「机器狗」Spot

波士顿动力 CEO Marc Raibert 告诉《The Verge》称,最近 Spot 正在大量的「概念验证」环境下接受测试,包括包裹递送和监控作业。他表示,尽管商用版 Spot 没有具体的上线日期,但应该会在几个月内与公众见面,并且年底前肯…

波士顿动力9.21亿美元被卖,地主家也养不起网红机器狗

据韩国经济日报消息,消息人士透露在今天上午的董事会上,韩国现代集团确认将以不到一万亿韩元(约9.21亿美元)收购波士顿动力。 消息人士称,为完成波士顿动力收购,现代汽车已聘请高盛(Goldman Sa…

科普分享 | 波士顿动力机器人进化史

我想很多人都看过美国科幻电影系列《终结者》,著名电影杂志《电影周刊》在评选20世纪最值得收藏的一部电影时,此片以最高票数位居第一。科幻是现实对历史的镜像,机器人领域最让人津津乐道的莫过于波士顿动力公司了。 图1 《终结者》剧照 波士…

人工智能与大数据—线性回归之波士顿房价预测

一,首先导入必要的包 1,paddle.fluid--->PaddlePaddle深度学习框架 2,numpy---------->python基本库,用于科学计算 3,os------------------>python的模块,可使用该模块对操作系统进行操作 4&a…

波斯顿动力机器人为啥那么牛逼?

关注星标公众号,不错过精彩内容 作者 | strongerHuang 微信公众号 | 嵌入式专栏 原文:1980 - 2022年,波斯顿动力发展历程、机器人产品分类汇总。 视频:位于我的视频号『strongerHuang』中视频专辑《斯顿动力机器人》(第…

思考累了,看看故事:波士顿动力公司大狗系列--SpotMini

2016年6月23日,Boston Dynamics在YouTube发布了他们新一款的机器人SpotMini,截止26日,网上已经有超过200万人观看过这段视频,再加上国内视频的转发,观看量可想而知。这个热门程度有不禁让人想起来今年年初新一代Atlas发…

波士顿动力机器狗在工厂打工的实录火了

博雯 发自 凹非寺量子位 报道 | 公众号 QbitAI 实验室里的波士顿动力狗,跳舞跑酷后空翻,堪称狗界网红,机器界顶流: 但如果出了实验室,开始正经找个厂上班呢? 机器狗的生活就变成了现在这样: 迈着…

开源教程 | 树莓派 DIY 波士顿动力机器狗,立省 53 万 RMB

国外小哥 Michael Romanko 利用树莓派3B,伺服电机,液晶显示器,锂电池,PCA9695控制板打造了一只波士顿动力机器狗,成本不到4000元。 通过三轴身体姿态控制,这样一只树莓派版波士顿动力狗,可以实现…

波士顿动力真的无可企及吗?一步步剖析四足机器人技术(一)

四足机器人运动控制 第一章 序第二章 运动状态姿态控制运动控制 第三章 步态第四章 CPG控制网络介绍CPG模型分类基于HOPF振荡器的CPG单元模型CPG网络控制模型 Tips参考文献 大家可以先看看效果 [四足机器人]开环运动控制测试 第一章 序 足式机器人较传统的四轮式和履带式有着…

自己动手做个DIY波士顿机器狗

我想来整个DIY波士顿机器狗。 中文的介绍: https://www.qbitai.com/2020/08/17572.html 软件安装: https://github.com/mike4192/spotMicro 硬件制作: https://www.thingiverse.com/thing:3445283 中文介绍是这样的: 用树莓派DIY波士顿机器狗,帮你省下50万:教程开…

波士顿仿生机械狗 原理分析

导语:Boston Dynamics 在机器人动力方面堪称翘楚,其由双足或多足机器人组成的机器人天团总是时不时能给我们带来惊喜。上周,Boston Dynamics 又发布了一段视频,并再次推出了一款全新机器人——Handle,这也是Boston Dyn…

数据可视化分析报告这样做,大家都轻松

在BI数据可视化工具上这样做分析报告,智能分析、可视化呈现,拖拉拽点击就能快速完成一份数据可视化分析报告。不仅做分析报告的人轻松了,看报表的也轻松了,毕竟除了能够一眼看懂分析报告,更能够随时随地根据实际需求去…

数据分析-01数据分析之数据可视化(转)

声明:数据分析01-08均来自尚学堂学习内容,文档仅供学习交流使用,已上传github 一、数据分析介绍 什么是数据分析: 百度百科:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和…

一般用哪些工具做大数据可视化分析?

做数据分析这些年来,从刚开始的死磕excel,到现在成为数据分析行业的偷懒大户,使用过的工具还真不少! 这篇分享一些我在可视化工具上的使用心得,由简单到复杂,按照可视化类型一共分为纯统计图表类、GIS地图…

如何做好数据可视化分析?

数据可视化是利用计算机图形学和图像处理技术,将数据转换成图形或图像在屏幕上显示出来,并进行交互处理的理论、方法和技术。数据可视化的实质是借助图形化手段,清晰有效的传达与沟通信息,使通过数据表达的内容更容易被理解。 那…