上文回顾---单链表
这章将来做一些链表的相关题目。
目录
1.移除链表元素
2.反转链表
3.链表的中间结点
4.链表中的倒数第k个结点
5.合并两个有序链表
6.链表分割
7.链表的回文结构
8.相交链表
9.环形链表
编辑
10.环形链表II
编辑 编辑
1.移除链表元素
思路:我们可以通过循环链表,判断结点的val与给出的val是否一致,一致则跳过该结点即可;
由于我们是跳过某个结点,那么就会让这个结点的上一个结点和下一个结点进行关联;所以我们以某结点的next的val去判断;所以对于头结点来说,我们还要创建一个结点连接着头结点;
我们自己创建一个结点,还可以规避头指针为空的问题;
答案:
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/struct ListNode* removeElements(struct ListNode* head, int val){//哨兵位struct ListNode* newhead=malloc(sizeof(struct ListNode));newhead->next=head;struct ListNode* cur=newhead;while(cur->next){//判断下一个的值if(cur->next->val==val){cur->next=cur->next->next;}else{cur=cur->next;}}//返回头指针return newhead->next;}
2.反转链表
思路:这道题实际上就是让结点的next改变即可;
所以在这里,我们创建3个指针prev,cur,next,让cur的next指向prev,然后进行指针移动,循环往复;一开始的prev指向NULL;如果head为空,那么就特殊处理,直接返回空;
答案:
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/struct ListNode* reverseList(struct ListNode* head){//特殊条件if(head==NULL){return NULL;}struct ListNode* cur=head;struct ListNode* prev=NULL;struct ListNode* next=head->next;//移动指针while(cur){cur->next=prev;prev=cur;cur=next;//判断nextif(next!=NULL){next=next->next;}}return prev;
}
3.链表的中间结点
思路1:我们可以先算出链表的总长度,然后再取中间结点的位置;
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/struct ListNode* middleNode(struct ListNode* head){//先确定链表长度int i=0;struct ListNode* node=head;while(node!=NULL){node=node->next;i++;}//确定中间节点位置int k=i/2;for(int i=0;i<k;i++){head=head->next;}return head;
}
思路2:利用快慢指针的思想;
我们只有在链表遍历到为NULL才知道结束,那么我们是否可以利用当指针到达末尾时就知道中间位置的思想呢?
这里我们用到的快慢指针思想就可以解决该问题,利用它们的速度差,走到的长度就是不一样的;
快指针一次跨越2个结点,而慢指针一次跨越1个结点,等到快指针到达末尾时,慢指针刚好到达中间位置;
对于两个中间结点的,我们需要让快指针走到NULL才能达到第二个结点;而一个中间结点的,只需要让快指针走到最后一个结点即可;
答案:
struct ListNode* middleNode(struct ListNode* head){//快慢指针struct ListNode* slow,*fast;slow=fast=head;//移动while(fast&&fast->next){slow=slow->next;fast=fast->next->next;}return slow;
}
4.链表中的倒数第k个结点
思路:这里还是利用到快慢指针的思想;还是利用快指针到达末尾,然后得知结点的思路;
只不过这里利用的是快慢之间的相对距离,上一题是快慢之间的相对速度;
我们可以让fast指针先走k步,然后在让slow和fast同时走,那么当fast指针到达NULL时, slow刚好到达返回的结点;
这里要注意的几个特殊情况:头指针为空;k的大小超过链表长度;
答案:
/*** struct ListNode {* int val;* struct ListNode *next;* };*//*** * @param pListHead ListNode类 * @param k int整型 * @return ListNode类*/
struct ListNode* FindKthToTail(struct ListNode* pListHead, int k ) {if(pListHead==NULL){return NULL;}//利用相对距离struct ListNode* slow,*fast;slow=fast=pListHead;//先走k步while(k&&fast){fast=fast->next;k--;}if(k>0){return NULL;}while(fast){slow=slow->next;fast=fast->next;}return slow;}
5.合并两个有序链表
思路:这里我们先创建一个结点,通过判断两链表的头结点的val大小,来决定连接着哪个;
然后循环遍历,移动指针,执行同样的操作;
当某一链表结束了,需要链接另一条链表剩余的结点;
答案:
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/struct ListNode* mergeTwoLists(struct ListNode* list1, struct ListNode* list2){//哨兵位struct ListNode* prehead=malloc(sizeof(struct ListNode));//比大小struct ListNode* prev=prehead;while(list1&&list2){if(list1->val<list2->val){prev->next=list1;list1=list1->next;prev=prev->next;}else{prev->next=list2;list2=list2->next;prev=prev->next;}}//判断哪个链表有剩余prev->next=list1==NULL?list2:list1;return prehead->next;
}
6.链表分割
思路:我们可以创建2个结点,第一个结点连接着比x小的结点,第二个连接着>=x的结点;
最后将着两个新链表连接在一起;
这里要注意,最后的结点要接空,否则该结点的next保持不变,可能会造成环,将会报错;
答案:
/*
struct ListNode {int val;struct ListNode *next;ListNode(int x) : val(x), next(NULL) {}
};*/
class Partition {
public:ListNode* partition(ListNode* pHead, int x) {struct ListNode* prevHead1=(struct ListNode*)malloc(sizeof(ListNode));struct ListNode* prevHead2=(struct ListNode*)malloc(sizeof(ListNode));ListNode* tail1=prevHead1;ListNode* tail2=prevHead2;while(pHead){if(pHead->val<x){tail1->next=pHead;tail1=tail1->next;}else {tail2->next=pHead;tail2=tail2->next;}pHead=pHead->next;}//连接tail1->next=prevHead2->next;//尾置空tail2->next=NULL;return prevHead1->next;}
};
7.链表的回文结构
思路:这里我们没有办法从后走向前,单链表是单向的;所以我们可以只能从前往后走;
我们可以先找到中间结点,然后对中间结点之后的链表进行倒转,最后通过中间指针和头指针遍历,判断对应的val是否相同即可;
答案:
/*
struct ListNode {int val;struct ListNode *next;ListNode(int x) : val(x), next(NULL) {}
};*/
class PalindromeList {
public:struct ListNode* middleNode(struct ListNode* head){//快慢指针struct ListNode* slow,*fast;slow=fast=head;//移动while(fast&&fast->next){slow=slow->next;fast=fast->next->next;}return slow;}struct ListNode* reverseList(struct ListNode* head){//特殊条件if(head==NULL){return NULL;}struct ListNode* cur=head;struct ListNode* prev=NULL;struct ListNode* next=head->next;//移动指针while(cur){cur->next=prev;prev=cur;cur=next;//判断nextif(next!=NULL){next=next->next;}}return prev;}bool chkPalindrome(ListNode* head) {ListNode* mid=middleNode(head); //找中间ListNode* rmid=reverseList(mid); //中间位置后面倒置//比较while(rmid){if(head->val!=rmid->val){return false;}head=head->next;rmid=rmid->next;}return true;}
};
8.相交链表
思路:我们要看作是两条链表,然后后半部分连接是相同部分的结点;
会发现相交的链表的相交部分都是一样的;我们可以利用它们的尾结点来判断是否相交;
对于没有相交的部分,我们无法确保它们的长度;所以我们可以先让比较长的链表先走长度差,然后再一起访问;当访问的结点一致时,表明找到了相交的第一个结点;
答案:
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/
struct ListNode *getIntersectionNode(struct ListNode *headA, struct ListNode *headB) {int lenthA=1,lenthB=1;struct ListNode* curA=headA;struct ListNode* curB=headB;//计算链表长度while(curA->next){++lenthA;curA=curA->next;}while(curB->next){++lenthB;curB=curB->next;}//尾节点判断,不一样说明没有香蕉if(curA!=curB){return NULL;}//长度先走差距步struct ListNode* longList=headA,*shortList=headB;int abs=fabs(lenthA-lenthB);if(lenthA<lenthB){longList=headB;shortList=headA;}while(abs--){longList=longList->next;}//找到相同的交点while(longList!=shortList){longList=longList->next;shortList=shortList->next;}return longList;
}
这里要注意,curA,curB只能走到尾结点,目的是为了判断它们是否相同,是否相交;
9.环形链表
思路:还是利用快慢指针的思想;
假设有环,通过快慢指针, 快指针一定先进入环中,当慢指针进入环时,让快指针去追逐慢指针;
如果快指针走到了空,表示没有环;
这里我们让快指针走两步,让慢指针走1步;当慢指针进入环时,假设快指针到慢指针距离为N,那么没走一次,它们之间的距离就会减1,直至减到N为0,表示快指针追到了;
答案:
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/
bool hasCycle(struct ListNode *head) {//快慢指针//赛道追逐问题struct ListNode* slow=head;struct ListNode* fast=head;while(fast&&fast->next){fast=fast->next->next;slow=slow->next;if(fast==slow){return true;}}return false;}
这里为什么不让快指针走3步,让慢指针走1步呢?
假设慢指针进入循环后它们之间距离为N
每走一次,它们之间的距离就会减2,N-2,N-4……
如果N为偶数,那么减到最后可以为0,那么就表示追上了,
而如果N为奇数,那么追到最后为1或者-1,不是差一点追上,就是追过了,所以它们的相遇还要考虑环的周长,追过了距离就变为周长-1;
到最后,可能追上了,可能一直遇不到;
例如:
当slow在左边,fast就在右边;slow在右边,fast就在左边;永远都遇不到;
所以为了方便解决问题,就让快指针走2步即可;
10.环形链表II
思路:这里我们要在第9题的思想上再引入数学的思想;
假设起点到环入口距离为L,环周长为C,入口到相遇点距离X;
fast指针走的距离是slow指针的2倍,所以fast指针会先进入环中, fast可能会在环中绕几圈,我们设为n;
那么slow指针走的距离为L+X;
fast指针走的距离为L+n(n>=1)*C+X,fast指针要追上slow,至少要绕一圈环;
那么通过它们之间的关系
得到2(L+X)=L+n*C+X
最终得到L=(n-1)*C+C-X;
也就是说,L的距离会等于n圈环的周长加上相遇点到入口的距离;
那么将得出结论:
一个指针从起点走,一个指针从相遇点走,它们将会在入口点相遇;
答案:
/*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/
struct ListNode *detectCycle(struct ListNode *head) {//快慢指针struct ListNode* fast,*slow;fast=slow=head;//有环while(fast&&fast->next){fast=fast->next->next;slow=slow->next;//相遇点if(fast==slow){struct ListNode* meet=fast;while(meet!=head){meet=meet->next;head=head->next;}return meet;}}return NULL;
}
通过分析之后,我们不需要管那些未知数;
假设L很长,环很小,那么在相遇点的指针就会在环中多走几圈;
假设L很短,那么相遇点到入口点的距离就刚好是L的长度;
所以在写代码中,我们只需要知道起始的指针和相遇点的指针最终会相遇,且就是入口点。