大家好,我是微学AI,今天给大家介绍一下深度学习实战26-(Pytorch)搭建TextCNN实现多标签文本分类的任务,TextCNN是一种用于文本分类的深度学习模型,它基于卷积神经网络(Convolutional Neural Networks, CNN)实现。TextCNN的主要思想是使用卷积操作从文本中提取有用的特征,并使用这些特征来预测文本的类别。
TextCNN将文本看作是一个一维的时序数据,将每个单词嵌入到一个向量空间中,形成一个词向量序列。然后,TextCNN通过堆叠一些卷积层和池化层来提取关键特征,并将其转换成一个固定大小的向量。最后,该向量将被送到一个全连接层进行分类。TextCNN的优点在于它可以非常有效地捕捉文本中的局部和全局特征,从而提高分类精度。此外,TextCNN的训练速度相对较快,具有较好的可扩展性.
TextCNN做多标签分类
1.库包导入
import os
import re
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score, precision_score, recall_score
from collections import Counter