vector【2】模拟实现(超详解哦)

vector

  • 引言(实现概述)
  • 接口实现详解
    • 默认成员函数
      • 构造函数
      • 析构函数
      • 赋值重载
    • 迭代器
    • 容量
      • size与capacity
      • reserve
      • resize
      • empty
    • 元素访问
    • 数据修改
      • insert
      • erase
      • push_back与pop_back
      • swap
  • 模拟实现源码概览
  • 总结

引言(实现概述)

在前面,我们介绍了vector的使用:
戳我康vector介绍与使用

在本篇文章中将重点介绍vector的接口实现,通过模拟实现可以更深入的理解与使用vector。
在这里插入图片描述

我们可以在网上搜索到vector的实现源码, 与string中使用一个指针指向存储数据的空间,两个整型来刻画size与capacity不同,vector中是通过三个迭代器 _start_finish_endOfStorage分别指向数据块的起始位置、有效数据末尾的下一个位置、存储容量末尾的下一个位置来管理数据的。vector中迭代器就是原生指针,本质上就是使用三个指针来管理动态申请的存储数据的空间。

在这里插入图片描述

vector是一个类模板,其声明与定义不能分离。我们将模拟实现的vector放在我们创建的命名空间内,以防止与库发生命名冲突。

在vector的模拟实现中,我们只实现一些主要的接口,包括默认成员函数、迭代器、容量、元素访问与数据修改

接口实现详解

默认成员函数

构造函数

构造函数的模拟实现包括无参构造、n个指定元素构造、迭代器区间构造与拷贝构造

无参构造:即首先在初始化列表中,将三个属性全部初始化为空指针即可:

    vector(): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){}

n个指定元素构造

这个重载版本有两个参数,第一个是int,第二个是const T&,表示用nvalue构造vector,第二个参数缺省值为其默认构造T()

首先new一块大小为n个元素大小的空间,将其赋值给_start
然后_finish的值就是_start + n_endOfStorage的值与_finish相同;
最后for循环将nvalue写入空间中:

    vector(int n, const T& value = T())   //{_start = new T[n];_finish = _start + n;_endOfStorage = _finish;for (int i = 0; i < n; ++i){*(_start + i) = value;}}

迭代器区间构造

使用迭代器区间的构造,是一个函数模板,即可以使用其他容器的迭代器区间来构造vector。

这个重载版本的实现有许多方式,这里的实现是偷懒版本的,即首先将三个属性初始化为空指针后,再复用push_back(后面实现)来将迭代器区间中的元素尾插到新vector中:

    template<class InputIterator>vector(InputIterator first, InputIterator last): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){while (first < last){push_back(*first);++first;}}

拷贝构造

拷贝构造时,首先将三个属性都初始化为空指针;
然后使用reserve(后面会实现)将新vector扩容与原vector一致;
最后循环将原vector中的数据拷贝到新vector中即可:

    vector(const vector<T>& v): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){int sz = v.size();reserve(sz);for (int i = 0; i < sz; ++i){*(_start + i) = v[i];}}

析构函数

析构函数即释放动态申请的资源,即delete[] _start即可,同时可以顺便将三个属性均置空:

    ~vector(){if (_start != nullptr){delete[] _start;_start = _finish = _endOfStorage = nullptr;}}

赋值重载

在实现赋值运算符重载时,存在深浅拷贝的问题,为了简便我们使用现代版本:

现代版本的参数类型为vector<T>,而不是引用,这就使得vector对象在传参时会生成一个临时对象,我们将这个临时对象与要替换的对象*this互换,就实现了将一个对象赋值到了*this,最后返回*this即可,临时对象会在函数栈帧销毁时析构(swap后面实现)。

    vector<T>& operator= (vector<T> v){swap(v);return *this;}

迭代器

vector的迭代器本质上就是原生指针,所以我们只需要T* 重命名为iterator即可实现迭代器,并且具有原生指针的++--+-指针相减等的属性:

	typedef T* iterator;typedef const T* const_iterator;

与string部分相同,我们暂时只实现beginend,关于反向迭代器的实现在后面会详细介绍。
begin返回首元素的地址,end返回尾元素下一个位置的地址,他们分别重载有const版本:

    iterator begin(){return _start;}iterator end(){return _finish;}const_iterator begin() const{return _start;}const_iterator end() const{return _finish;}

容量

size与capacity

之前讲到vector迭代器的底层是原生指针,支持指针减指针的操作
对于size即元素的个数,_finish - _start的值即空间中数据的末尾的下一个位置的指针减首元素位置的指针,即元素个数;
对于capacity即容量的大小,_endOfStorage - _start的值即空间末尾下一个位置的指针减首元素位置的指针,即容量大小:

	size_t size() const{return _finish - _start;}size_t capacity() const{return _endOfStorage - _start;}

reserve

reserve用于扩容
对于C++而言,使用new扩容时,必须进行重新开辟空间,将原空间中的元素转移至新空间,最后释放原空间的操作。这样的过程将是十分影响效率的:

在库实现中,当传参的n大于原容量时,reserve会实现扩容,小于原容量时,reserve不进行缩容操作。所以我们模拟实现时,先判断n是否大于原容量,当大于原容量时在再进行后续操作;
首先new一块大小为n个元素大小的空间;
然后就需要挪动数据,需要注意的是,不能使用memcpy来拷贝数据到新空间中,因为memcpy是逐字节拷贝,而自定义类型是会有动态申请的资源的,这样在释放原空间时就会使新空间中的属性为野指针,当生命周期结束时释放资源时就会释放野指针从而崩溃。所以我们需要调用operator=逐一拷贝数据到新空间中,并释放原空间
最后令_start指向新空间的首元素,_finish指向数据的结尾(可以在释放前记录size的值,此时加上即可),_endOfStorage指向空间的结尾,即_start + n

 void reserve(size_t n){if (n > capacity()){T* temp = new T[n];int sz = size();if (sz != 0){ //当T为自定义类型时,memcpy为浅拷贝,temp中的自定义类型的数据与*this是相同的,delete调析构释放原空间就会使temp中数据为野指针//memcpy(temp, cbegin(), sizeof(T) * size()); for (size_t i = 0; i < size(); ++i){*(temp + i) = *(_start + i);}delete[] _start;}_start = temp;_finish = _start + sz;_endOfStorage = _start + n;}}

resize

resize用于改变元素个数
n小于元素个数时,删除多于的元素;n大于元素个数时,使用指定的元素value补足(value为缺省参数,缺省值为T()

首先判断n是否大于元素个数,当大于元素个数时还需要进一步判断n是否大于容量需要扩容;
之后逐一用value补足,这里同样需要是用operator=,来避免浅拷贝带来的问题,并调整_finish的指向;
当小于元素个数时,直接将_finish的值调整为_start + n即可:

    void resize(size_t n, const T& value = T()){if (n > size()){if (n > capacity()){reserve(n);}int oldSize = size();_finish = _start + n;for (size_t i = oldSize; i < n; ++i){*(_start + i) = value;}}else{_finish = _start + n;}}

empty

empty用于判断vector是否为空,为空返回true,否则返回false。这里复用size即可,当size返回0时即为空:

    bool empty(){if (size() == 0){return true;}return false;}

元素访问

元素访问即实现operator[],可以实现通过下标访问元素
有两个重载版本即普通对象与const对象。

首先判断pos是否越界,因为pos为无符号整型,所以只需要判断_start + pos 是否小于 _finish即可;
然后直接返回_start + pos的解引用即可:

    T& operator[](size_t pos){assert(_start + pos < _finish);return *(_start + pos);}const T& operator[](size_t pos) const{assert(_start + pos < _finish);return *(_start + pos);}

数据修改

insert

insert用于在pos位置插入数据,模拟实现insert时,我们只实现在pos位置(迭代器)插入一个元素的情况:

首先判断pos是否越界,没有越界时还需要再判断是否需要扩容;
这里就存在一个问题,在上一篇文章提到了迭代器失效的问题:扩容后,指向原来空间的迭代器pos就会成为野指针而失效。为解决这个问题,我们可以事先计算pos对于_start的相对位置sz,从而在释放原空间后通过这个相对位置在新空间中重新找到pos,即_start + sz
然后就可以循环将pos位置及以后的元素逐一向后移动一个元素。这个过程是十分影响效率的;
最后将要插入的元素放在pos位置,并++_finish

  	iterator insert(iterator pos, const T& x) //pos传参,在reserve后会出现迭代器失效{assert(pos >= _start && pos <= _finish);int sz = pos - _start;  if (size() >= capacity()){reserve(capacity() == 0 ? 10 : capacity() * 2);pos = _start + sz;  //解决迭代器失效}vector<T>::iterator it = end() - 1;while (it >= pos){*(it + 1) = *it;--it;}*pos = x;++_finish;return _start;}

erase

erase用于删除一段数据,这里只模拟实现删除pos位置(迭代器)的一个元素:

首先判断pos是否越界,如果没有越界再判断容器是否为空,为空就直接返回_start
然后循环将pos后面的元素逐一向前移动一个元素(从后向前覆盖);
最后--_finish,并返回_start

    iterator erase(iterator pos){assert(pos >= _start && pos < _finish);if (empty()){return _start;}vector<T>::iterator it = pos + 1;while (it < _endOfStorage){*(it - 1) = *it;++it;}--_finish;return _start;}

push_back与pop_back

由于在任意位置插入与删除十分影响效率,头插与头删更甚,所以库中只提供了尾插与尾删的接口,不用挪动数据使得其效率很高

模拟实现时其实只需要调用上面实现的inserterase即可:
push_back即在end()的位置插入一个元素x
pop_back即在end() - 1的位置删除一个元素:

    void push_back(const T& x){insert(end(), x);}void pop_back(){erase(end() - 1);}

swap

swap函数用于交换两个对象的数据

使用算法库中的swap通过创建临时变量交换的话,就会发生多次深拷贝,十分影响效率。
对于vector对象的交换,只需要逐一交换他们的三个属性即可:

	void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_endOfStorage, v._endOfStorage);}

模拟实现源码概览

(关于反向迭代器的实现在后面会详细介绍,现在可以暂时忽略)

#include<iostream>
#include<cassert>
#include"my_reverse_iterator.h"namespace qqq
{template<class T>class vector{public:/ iterator /////vector的迭代器是一个原生指针 typedef T* iterator;typedef const T* const_iterator;typedef ReverseIterator<iterator, T&, T*> reverse_iterator;typedef ReverseIterator<const_iterator, const T&, const T*> const_reverse_iterator;iterator begin(){return _start;}iterator end(){return _finish;}const_iterator cbegin() const{return _start;}const_iterator cend() const{return _finish;}reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}/// construct and destroy //vector(): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){}vector(int n, const T& value = T())   //{_start = new T[n];_finish = _start + n;_endOfStorage = _finish;for (int i = 0; i < n; ++i){*(_start + i) = value;}}template<class InputIterator>vector(InputIterator first, InputIterator last): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){while (first < last){push_back(*first);++first;}}//vector(const vector<T>& v)//{//    _start = new T[v.size()];//    _finish = _start + v.size();//    _endOfStorage = _start + v.capacity();// //    memcpy(begin(), v.cbegin(), sizeof(T) * v.size());//}vector(const vector<T>& v): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){int sz = v.size();reserve(sz);for (int i = 0; i < sz; ++i){*(_start + i) = v[i];}}vector<T>& operator= (vector<T> v){swap(v);return *this;}~vector(){if (_start != nullptr){delete[] _start;_start = _finish = _endOfStorage = nullptr;}} capacity ///size_t size() const{return _finish - _start;}size_t capacity() const{return _endOfStorage - _start;}bool empty(){if (size() == 0){return true;}return false;}void reserve(size_t n){if (n > capacity()){T* temp = new T[n];int sz = size();if (sz != 0){ //当T为自定义类型时,memcpy为浅拷贝,temp中的自定义类型的数据与*this是相同的,delete调析构释放原空间就会使temp中数据为野指针//memcpy(temp, cbegin(), sizeof(T) * size()); for (size_t i = 0; i < size(); ++i){*(temp + i) = *(_start + i);}delete[] _start;}_start = temp;_finish = _start + sz;_endOfStorage = _start + n;}}void resize(size_t n, const T& value = T()){if (n > size()){if (n > capacity()){reserve(n);}int oldSize = size();_finish = _start + n;for (size_t i = oldSize; i < n; ++i){*(_start + i) = value;}}else{_finish = _start + n;}}///accessT& operator[](size_t pos){assert(_start + pos < _finish);return *(_start + pos);}const T& operator[](size_t pos) const{assert(_start + pos < _finish);return *(_start + pos);}///modify/void push_back(const T& x){insert(end(), x);}void pop_back(){erase(end() - 1);}void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_endOfStorage, v._endOfStorage);}iterator insert(iterator pos, const T& x)//pos传参,在reserve后会出现迭代器失效{assert(pos >= _start && pos <= _finish);int sz = pos - _start;  if (size() >= capacity()){reserve(capacity() == 0 ? 10 : capacity() * 2);pos = _start + sz;  //解决迭代器失效}vector<T>::iterator it = end() - 1;while (it >= pos){*(it + 1) = *it;--it;}*pos = x;++_finish;return _start;}iterator erase(iterator pos){assert(pos >= _start && pos < _finish);if (empty()){return _start;}vector<T>::iterator it = pos + 1;while (it < _endOfStorage){*(it - 1) = *it;++it;}--_finish;return _start;}private:iterator _start;        // 指向数据块的开始iterator _finish;       // 指向有效数据的尾iterator _endOfStorage; // 指向存储容量的尾};
}

总结

到此,关于vector的主要接口实现就结束了
相信通过接口的模拟实现可以使我们更深入的了解vector
关于STL容器的介绍才刚刚开始,欢迎大家持续关注哦

如果大家认为我对某一部分没有介绍清楚或者某一部分出了问题,欢迎大家在评论区提出

如果本文对你有帮助,希望一键三连哦

希望与大家共同进步哦

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/92827.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nginx 解决api跨域问题

环境: nginx 1.22.1 宝塔8.0 php lavarel 在nginx里加入下面的设置 #这里填*就是任何域名都允许跨域add_header Access-Control-Allow-Origin "*";#CORS请求默认不发送Cookie和HTTP认证信息。但是如果要把Cookie发到服务器&#xff0c;要服务器同意&#xff0c…

5G之CSI报告的内容

[TOC]5G之CSI报告的内容 一、CSI包括的内容 1. UE上报的信道状态信息&#xff08;Channel State Information&#xff0c;CSI&#xff09;包括 信道质量指示&#xff08;Channel Quality Indicator, CQI)&#xff1b;预编码矩阵指示&#xff08;Precoding Matrix Indicator&…

软件压力测试对软件产品起到什么作用?

一、软件压力测试是什么? 软件压力测试是一种通过模拟正常使用环境中可能出现的大量用户和大数据量的情况&#xff0c;来评估软件系统在压力下的稳定性和性能表现的测试方法。在软件开发过程中&#xff0c;经常会遇到一些性能瓶颈和稳定性问题&#xff0c;而软件压力测试的作…

Linux fork 和 exec 联合使用创建一个全新的进程

复制和替换结合在一起&#xff08;forkexec&#xff09;是产生一个新进程的主要方式。 将复制和替换结合在一起&#xff08;forkexec&#xff09;&#xff1a; 先fork&#xff0c;使系统中多出一个进程&#xff0c;默认情况下&#xff0c;fork之后&#xff0c;父进程和子进程的…

ODB++资料解析

ODB文件是由VALOR提出的一种ASCII码&#xff0c;双向传输文件。奥宝公司和康代公司的设备都是用的ODB格式进行PCB的生产和检测。 对ODB文件进行解析把数据栅格化很重要&#xff0c;查了网上找不到一个成熟能用的ODB文件解析代码。自己上手写了一个。 当前解析一些载板&#x…

Vue3 setup中使用$refs

在 Vue 3 中的 Composition API 中&#xff0c;$refs 并不直接可用于 setup 函数。这是因为 $refs 是 Vue 2 的实例属性&#xff0c;而在 Vue 3 中&#xff0c;setup 函数是与模板实例分离的&#xff0c;不再使用实例属性。 实际工作中确实有需求&#xff0c;在setup 函数使用…

python列表笔记,python列表用法及基础操作

列表的介绍 定义100个变量&#xff0c;每个变量存放一个学生的姓名可行吗&#xff1f;有更好的办法吗&#xff1f; 答&#xff1a; 列表 一、列表的格式 定义列的格式&#xff1a;[元素1, 元素2, 元素3, ..., 元素n] 变量tmp的类型为列表 tmp [xiaoWang,180, 65.0] 列…

计算机视觉目标检测性能指标

目录 精确率&#xff08;Precision&#xff09;和召回率&#xff08;Recall&#xff09; F1分数&#xff08;F1 Score&#xff09; IoU&#xff08;Intersection over Union&#xff09; P-R曲线&#xff08;Precision-Recall Curve&#xff09;和 AP mAP&#xff08;mean…

网络通信原理计算IP地址都网络号 主机范围 可用个数(第四十四课)

计算192.168.1.1的网络号ID IP 地址中计算=⇒网络ID计算:默认网络位不变 注解位全0 一 IP地址的网络ID 方法一 192.168.1.1 为例 IP地址的网络号ID 11000000.10101000.00000001.00000001 1111111.11111111.11111111.00000000 逻辑与运算 (二进制) = 192.168.1.0 (十进制) …

NVIDIA Omniverse与GPT-4结合生成3D内容

全球各行业对 3D 世界和虚拟环境的需求呈指数级增长。3D 工作流程是工业数字化的核心&#xff0c;开发实时模拟来测试和验证自动驾驶车辆和机器人&#xff0c;操作数字孪生来优化工业制造&#xff0c;并为科学发现铺平新的道路。 如今&#xff0c;3D 设计和世界构建仍然是高度…

【mysql】事务的四种特性的理解

&#x1f307;个人主页&#xff1a;平凡的小苏 &#x1f4da;学习格言&#xff1a;命运给你一个低的起点&#xff0c;是想看你精彩的翻盘&#xff0c;而不是让你自甘堕落&#xff0c;脚下的路虽然难走&#xff0c;但我还能走&#xff0c;比起向阳而生&#xff0c;我更想尝试逆风…

iOS Epub阅读器改造记录

六个月前在这个YHEpubDemo阅读器的基础上做了一些优化&#xff0c;这里做一下记录。 1.首行缩进修复 由于分页的存在&#xff0c;新的一页的首行可能是新的一行&#xff0c;则应该缩进&#xff1b;也可能是前面一页段落的延续&#xff0c;这时候不应该缩进。YHEpubDemo基于XDS…

flutter 常见的状态管理器

flutter 常见的状态管理器 前言一、Provider二、Bloc三、Redux四、GetX总结 前言 当我们构建复杂的移动应用时&#xff0c;有效的状态管理是至关重要的&#xff0c;因为应用的不同部分可能需要共享数据、相应用户交互并保持一致的状态。Flutter 中有多种状态管理解决方案&#…

Oracle和MySQL有哪些区别?从基本特性、技术选型、字段类型、事务、语句等角度详细对比Oracle和MySQL

导航&#xff1a; 【Java笔记踩坑汇总】Java基础进阶JavaWebSSMSpringBoot瑞吉外卖SpringCloud黑马旅游谷粒商城学成在线MySQL高级篇设计模式面试题汇总源码_vincewm的博客-CSDN博客 目录 一、基本区别 1.1 基本特性 1.2 Oracle和MySQL如何做技术选型&#xff1f; 1.3 RDBM…

经验分享:企业数据仓库建设方案总结!

导读 在企业的数字化转型浪潮中&#xff0c;数据被誉为“新时代的石油”&#xff0c;而数据仓库作为数据管理与分析的核心基础设施&#xff0c;在企业的信息化建设中扮演着重要的角色。本文将深入探讨企业数据仓库建设过程中所遇到的问题以及解决经验&#xff0c;为正在筹备或…

Spring对象装配

在spring中&#xff0c;Bean的执行流程为启动spring容器&#xff0c;实例化bean&#xff0c;将bean注册到spring容器中&#xff0c;将bean装配到需要的类中。 既然我们需要将bea装配到需要的类中&#xff0c;那么如何实现呢&#xff1f;这篇文章&#xff0c;将来阐述一下如何实…

无涯教程-Perl - setservent函数

描述 在第一次调用getservent之前,应先调用此函数。 STAYOPEN参数是可选的,在大多数系统上未使用。当getservent()检索服务数据库中下一行的信息时,然后setervent设置(或重置)枚举到主机条目集的开头。 语法 以下是此函数的简单语法- setservent STAYOPEN返回值 此函数不返…

stack 、 queue的语法使用及底层实现以及deque的介绍【C++】

文章目录 stack的使用queue的使用适配器queue的模拟实现stack的模拟实现deque stack的使用 stack是一种容器适配器&#xff0c;具有后进先出&#xff0c;只能从容器的一端进行元素的插入与提取操作 #include <iostream> #include <vector> #include <stack&g…

矢量绘图UI设计软件Sketch mac中文版软件说明

Sketch mac是一款适用于 UI/UX 设计、网页设计、图标制作等领域的矢量绘图软件。 Sketch mac软件特点 1. 简单易用的界面设计&#xff1a;Sketch 的用户界面简洁明了&#xff0c;使得用户可以轻松上手操作&#xff0c;不需要复杂的学习过程。 2. 强大的矢量绘图功能&#xff1a…

驱动day3

思维导图 练习 1.编写LED灯的驱动&#xff0c;可以控制三个灯&#xff0c;应用程序中编写控制灯的逻辑&#xff0c;要使用自动创建设备节点机制 head.h #ifndef __HEAD_H__ #define __HEAD_H__typedef struct {unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR…