2023国赛数学建模思路 - 复盘:校园消费行为分析

文章目录

  • 0 赛题思路
  • 1 赛题背景
  • 2 分析目标
  • 3 数据说明
  • 4 数据预处理
  • 5 数据分析
    • 5.1 食堂就餐行为分析
    • 5.2 学生消费行为分析
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 赛题背景

校园一卡通是集身份认证、金融消费、数据共享等多项功能于一体的信息集成系统。在为师生提供优质、高效信息化服务的同时,系统自身也积累了大量的历史记录,其中蕴含着学生的消费行为以及学校食堂等各部门的运行状况等信息。

很多高校基于校园一卡通系统进行“智慧校园”的相关建设,例如《扬子晚报》2016年 1月 27日的报道:《南理工给贫困生“暖心饭卡补助”》。

不用申请,不用审核,饭卡上竟然能悄悄多出几百元……记者昨天从南京理工大学独家了解到,南理工教育基金会正式启动了“暖心饭卡”

项目,针对特困生的温饱问题进行“精准援助”。

项目专门针对贫困本科生的“温饱问题”进行援助。在学校一卡通中心,教育基金会的工作人员找来了全校一万六千余名在校本科生 9 月中旬到 11月中旬的刷卡记录,对所有的记录进行了大数据分析。最终圈定了 500余名“准援助对象”。

南理工教育基金会将拿出“种子基金”100万元作为启动资金,根据每位贫困学生的不同情况确定具体的补助金额,然后将这些钱“悄无声息”的打入学生的饭卡中,保证困难学生能够吃饱饭。

——《扬子晚报》2016年 1月 27日:南理工给贫困生“暖心饭卡补助”本赛题提供国内某高校校园一卡通系统一个月的运行数据,希望参赛者使用

数据分析和建模的方法,挖掘数据中所蕴含的信息,分析学生在校园内的学习生活行为,为改进学校服务并为相关部门的决策提供信息支持。

2 分析目标

  • 1. 分析学生的消费行为和食堂的运营状况,为食堂运营提供建议。

  • 2. 构建学生消费细分模型,为学校判定学生的经济状况提供参考意见。

3 数据说明

附件是某学校 2019年 4月 1 日至 4月 30日的一卡通数据

一共3个文件:data1.csv、data2.csv、data3.csv
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 数据预处理

将附件中的 data1.csv、data2.csv、data3.csv三份文件加载到分析环境,对照附录一,理解字段含义。探查数据质量并进行缺失值和异常值等方面的必要处理。将处理结果保存为“task1_1_X.csv”(如果包含多张数据表,X可从 1 开始往后编号),并在报告中描述处理过程。

import numpy as np
import pandas as pd
import os
os.chdir('/home/kesci/input/2019B1631')
data1 = pd.read_csv("data1.csv", encoding="gbk")
data2 = pd.read_csv("data2.csv", encoding="gbk")
data3 = pd.read_csv("data3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

data1.columns = ['序号', '校园卡号', '性别', '专业名称', '门禁卡号']
data1.dtypes

在这里插入图片描述

data1.to_csv('/home/kesci/work/output/2019B/task1_1_1.csv', index=False, encoding='gbk')
data2.head(3)

在这里插入图片描述
将 data1.csv中的学生个人信息与 data2.csv中的消费记录建立关联,处理结果保存为“task1_2_1.csv”;将 data1.csv 中的学生个人信息与data3.csv 中的门禁进出记录建立关联,处理结果保存为“task1_2_2.csv”。

data1 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_1.csv", encoding="gbk")
data2 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_2.csv", encoding="gbk")
data3 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

5 数据分析

5.1 食堂就餐行为分析

绘制各食堂就餐人次的占比饼图,分析学生早中晚餐的就餐地点是否有显著差别,并在报告中进行描述。(提示:时间间隔非常接近的多次刷卡记录可能为一次就餐行为)

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

import matplotlib as mpl
import matplotlib.pyplot as plt
# notebook嵌入图片
%matplotlib inline
# 提高分辨率
%config InlineBackend.figure_format='retina'
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/home/kesci/work/SimHei.ttf")
import warnings
warnings.filterwarnings('ignore')
canteen1 = data['消费地点'].apply(str).str.contains('第一食堂').sum()
canteen2 = data['消费地点'].apply(str).str.contains('第二食堂').sum()
canteen3 = data['消费地点'].apply(str).str.contains('第三食堂').sum()
canteen4 = data['消费地点'].apply(str).str.contains('第四食堂').sum()
canteen5 = data['消费地点'].apply(str).str.contains('第五食堂').sum()
# 绘制饼图
canteen_name = ['食堂1', '食堂2', '食堂3', '食堂4', '食堂5']
man_count = [canteen1,canteen2,canteen3,canteen4,canteen5]
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("食堂就餐人次占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述
通过食堂刷卡记录,分别绘制工作日和非工作日食堂就餐时间曲线图,分析食堂早中晚餐的就餐峰值,并在报告中进行描述。

在这里插入图片描述

# 对data中消费时间数据进行时间格式转换,转换后可作运算,coerce将无效解析设置为NaT
data.loc[:,'消费时间'] = pd.to_datetime(data.loc[:,'消费时间'],format='%Y-%m-%d %H:%M',errors='coerce')
data.dtypes
# 创建一个消费星期列,根据消费时间计算出消费时间是星期几,Monday=1, Sunday=7
data['消费星期'] = data['消费时间'].dt.dayofweek + 1
data.head(3)
# 以周一至周五作为工作日,周六日作为非工作日,拆分为两组数据
work_day_query = data.loc[:,'消费星期'] <= 5
unwork_day_query = data.loc[:,'消费星期'] > 5work_day_data = data.loc[work_day_query,:]
unwork_day_data = data.loc[unwork_day_query,:]
# 计算工作日消费时间对应的各时间的消费次数
work_day_times = []
for i in range(24):work_day_times.append(work_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24):x.append('{:02d}:00'.format(i))
# 绘图
plt.plot(x, work_day_times, label='工作日')
# x,y轴标签
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
# 标题
plt.title('工作日消费曲线图', fontproperties=font)
# x轴倾斜60度
plt.xticks(rotation=60)
# 显示label
plt.legend(prop=font)
# 加网格
plt.grid()

在这里插入图片描述

# 计算飞工作日消费时间对应的各时间的消费次数
unwork_day_times = []
for i in range(24):unwork_day_times.append(unwork_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24): x.append('{:02d}:00'.format(i))
plt.plot(x, unwork_day_times, label='非工作日')
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
plt.title('非工作日消费曲线图', fontproperties=font)
plt.xticks(rotation=60)
plt.legend(prop=font)
plt.grid()

在这里插入图片描述
根据上述分析的结果,很容易为食堂的运营提供建议,比如错开高峰等等。

5.2 学生消费行为分析

根据学生的整体校园消费数据,计算本月人均刷卡频次和人均消费额,并选择 3个专业,分析不同专业间不同性别学生群体的消费特点。

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

# 计算人均刷卡频次(总刷卡次数/学生总人数)
cost_count = data['消费时间'].count()
student_count = data['校园卡号'].value_counts(dropna=False).count()
average_cost_count = int(round(cost_count / student_count))
average_cost_count# 计算人均消费额(总消费金额/学生总人数)
cost_sum = data['消费金额'].sum()
average_cost_money = int(round(cost_sum / student_count))
average_cost_money# 选择消费次数最多的3个专业进行分析
data['专业名称'].value_counts(dropna=False)

在这里插入图片描述

# 消费次数最多的3个专业为 连锁经营、机械制造、会计
major1 = data['专业名称'].apply(str).str.contains('18连锁经营')
major2 = data['专业名称'].apply(str).str.contains('18机械制造')
major3 = data['专业名称'].apply(str).str.contains('18会计')
major4 = data['专业名称'].apply(str).str.contains('18机械制造(学徒)')data_new = data[(major1 | major2 | major3) ^ major4]
data_new['专业名称'].value_counts(dropna=False)分析 每个专业,不同性别 的学生消费特点
data_male = data_new[data_new['性别'] == '男']
data_female = data_new[data_new['性别'] == '女']
data_female.head()

在这里插入图片描述
根据学生的整体校园消费行为,选择合适的特征,构建聚类模型,分析每一类学生群体的消费特点。

data['专业名称'].value_counts(dropna=False).count()
# 选择特征:性别、总消费金额、总消费次数
data_1 = data[['校园卡号','性别']].drop_duplicates().reset_index(drop=True)
data_1['性别'] = data_1['性别'].astype(str).replace(({'男': 1, '女': 0}))
data_1.set_index(['校园卡号'], inplace=True)
data_2 = data.groupby('校园卡号').sum()[['消费金额']]
data_2.columns = ['总消费金额']
data_3 = data.groupby('校园卡号').count()[['消费时间']]
data_3.columns = ['总消费次数']
data_123 =  pd.concat([data_1, data_2, data_3], axis=1)#.reset_index(drop=True)
data_123.head()# 构建聚类模型
from sklearn.cluster import KMeans
# k为聚类类别,iteration为聚类最大循环次数,data_zs为标准化后的数据
k = 3    # 分成几类可以在此处调整
iteration = 500
data_zs = 1.0 * (data_123 - data_123.mean()) / data_123.std()
# n_jobs为并发数
model = KMeans(n_clusters=k, n_jobs=4, max_iter=iteration, random_state=1234)
model.fit(data_zs)
# r1统计各个类别的数目,r2找出聚类中心
r1 = pd.Series(model.labels_).value_counts()
r2 = pd.DataFrame(model.cluster_centers_)
r = pd.concat([r2,r1], axis=1)
r.columns = list(data_123.columns) + ['类别数目']# 选出消费总额最低的500名学生的消费信息
data_500 = data.groupby('校园卡号').sum()[['消费金额']]
data_500.sort_values(by=['消费金额'],ascending=True,inplace=True,na_position='first')
data_500 = data_500.head(500)
data_500_index = data_500.index.values
data_500 = data[data['校园卡号'].isin(data_500_index)]
data_500.head(10)

在这里插入图片描述

# 绘制饼图
canteen_name = list(data_max_place.index)
man_count = list(data_max_place.values)
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("低消费学生常消费地点占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/93011.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

创新零售,京东重新答题?

继新一轮组织架构调整后&#xff0c;京东从低价到下沉动作不断。 新成立的创新零售部在京东老将闫小兵的带领下悄然完成了整合。近日&#xff0c;京喜拼拼已改名为京东拼拼&#xff0c;与七鲜、前置仓等业务共同承载起京东线上线下加速融合的梦想。 同时&#xff0c;拼拼的更…

接口自动化测试

1、生活中面临的问题:当前我们面临的这个bug修改好了&#xff0c;但是在其他地方又出现了新的bug&#xff0c;如何能够提前发现bug那 1.1 功能测试----是通过页面发送请求 1.2 接口测试---可以直接利用工具向服务器发送数据做一个结果验证 1.3 功能测试是在联调通过后进行开展的…

专访 BlockPI:共建账户抽象未来的新一代 RPC 基础设施

在传统 RPC 服务板块上&#xff0c;开发者一直饱受故障风险、运行环境混乱等难题的折磨。实现 RPC 服务的去中心化&#xff0c;且保持成本优势和可扩展性&#xff0c;始终是区块链基础设施建设的重要命题之一。从 2018 年观察中心化 RPC 供应商服务现状开始&#xff0c;BlockPI…

VectorStyler for Mac: 让你的创意无限绽放的全新设计工具

VectorStyler for Mac是一款专为Mac用户打造的矢量设计工具&#xff0c;它结合了功能强大的矢量编辑器和创意无限的样式编辑器&#xff0c;让你的创意无限绽放。 VectorStyler for Mac拥有直观简洁的用户界面&#xff0c;让你能够轻松上手。它提供了丰富的矢量绘图工具&#x…

[C++] 模板template

目录 1、函数模板 1.1 函数模板概念 1.2 函数模板格式 1.3 函数模板的原理 1.4 函数模板的实例化 1.4.1 隐式实例化 1.4.2 显式实例化 1.5 模板参数的匹配原则 2、类模板 2.1 类模板的定义格式 2.2 类模板的实例化 讲模板之前呢&#xff0c;我们先来谈谈泛型编程&am…

ABAP 新语法--Data Processing

1. String Template 新语法引入了字符串模板&#xff0c;用于处理字符串连接以及格式转换 字符串模板在 | … | 之间定义&#xff0c;主要分为两部分&#xff0c;固定文本和变量 其中&#xff0c;变量只能在 { … } 内使用&#xff0c;大括号之外的所有字符均作为固定文本使用…

STM32存储左右互搏 I2C总线FATS读写EEPROM ZD24C1MA

STM32存储左右互搏 I2C总线FATS读写EEPROM ZD24C1MA 在较低容量存储领域&#xff0c;EEPROM是常用的存储介质&#xff0c;可以通过直接或者文件操作方式进行读写。不同容量的EEPROM的地址对应位数不同&#xff0c;在发送字节的格式上有所区别。EEPROM是非快速访问存储&#xf…

【Spring 】了解Spring AOP

目录 一、什么是Spring AOP 二、AOP的使用场景 三、AOP组成 四、Spring AOP的实现 1、添加Spring AOP依赖 2、定义切面和切点 3、定义相关通知 五、 AOP的实现原理 1、什么是动态代理 2、 JDK代理和CGLIB代理的区别 一、什么是Spring AOP AOP&#xff08;Aspect Ori…

HarmonyOS NEXT新能力,一站式高效开发HarmonyOS应用

2023年8月6日华为开发者大会2023&#xff08;HDC.Together&#xff09;圆满收官&#xff0c;伴随着HarmonyOS 4的发布&#xff0c;华为向开发者发布了汇聚所有最新开发能力的HarmonyOS NEXT开发者预览版&#xff0c;并分享了围绕“一次开发&#xff0c;多端部署” “可分可合&a…

Spring Boot业务代码中使用@Transactional事务失效踩坑点总结

1.概述 接着之前我们对Spring AOP以及基于AOP实现事务控制的上文&#xff0c;今天我们来看看平时在项目业务开发中使用声明式事务Transactional的失效场景&#xff0c;并分析其失效原因&#xff0c;从而帮助开发人员尽量避免踩坑。 我们知道 Spring 声明式事务功能提供了极其…

面试之快速学习STL-deuqe和list

1. deque deque 容器用数组&#xff08;数组名假设为 map&#xff09;存储着各个连续空间的首地址。也就是说&#xff0c;map 数组中存储的都是指针如果 map 数组满了怎么办&#xff1f;很简单&#xff0c;再申请一块更大的连续空间供 map 数组使用&#xff0c;将原有数据&…

css3-grid:grid 布局 / 基础使用

一、理解 grid 二、理解 css grid 布局 CSS Grid布局是一个二维的布局系统&#xff0c;它允许我们通过定义网格和网格中每个元素的位置和尺寸来进行页面布局。CSS Grid是一个非常强大的布局系统&#xff0c;它不仅可以用于构建网格布局&#xff0c;还可以用于定位元素&#xf…

IC流程中 DFT 学习笔记(1)

引言 DFT是ASIC芯片设计流程中不可或缺的环节。其主要目的是在芯片前端设计验证完成后插入一些诸如寄存器链等可供测试的逻辑&#xff0c;算是IC后端设计的范畴。主要是在ASIC芯片流片完成后&#xff0c;通过这些已插入的逻辑&#xff0c;检测流片得到的芯片的制造质量。检测一…

Flink之Partitioner(分区规则)

Flink之Partitioner(分区规则) 方法注释global()全部发往1个taskbroadcast()广播(前面的文章讲解过,这里不做阐述)forward()上下游并行度一致时一对一发送,和同一个算子连中算子的OneToOne是一回事shuffle()随机分配(只是随机,同Spark的shuffle不同)rebalance()轮询分配,默认机…

玩转VS code 之 C/C++ 环境配置篇

PS&#xff1a;俺是菜鸟&#xff0c;整理和踩坑试错花了不少时间&#xff0c;如果这篇文章对您有用的话&#xff0c;请麻烦您留下免费的赞赞&#xff0c;赠人玫瑰&#xff0c;手留余香&#xff0c;码字踩坑不易&#xff0c;望三连支持 上一篇&#xff1a;玩转 VS code 之下载篇…

激活函数总结(十):激活函数补充(Identity、LogSigmoid、Bent Identity)

激活函数总结&#xff08;十&#xff09;&#xff1a;激活函数补充 1 引言2 激活函数2.1 Identity激活函数2.2 LogSigmoid激活函数2.3 Bent Identity激活函数 3. 总结 1 引言 在前面的文章中已经介绍了介绍了一系列激活函数 (Sigmoid、Tanh、ReLU、Leaky ReLU、PReLU、Swish、…

【Spring系列篇--关于IOC的详解】

目录 面试经典题目&#xff1a; 1. 什么是spring&#xff1f;你对Spring的理解&#xff1f;简单来说&#xff0c;Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。 2.什么是IoC&#xff1f;你对IoC的理解&#xff1f;IoC的重要性?将实例化对象的权利从程序员…

Rust软件外包开发语言的特点

Rust 是一种系统级编程语言&#xff0c;强调性能、安全性和并发性的编程语言&#xff0c;适用于广泛的应用领域&#xff0c;特别是那些需要高度可靠性和高性能的场景。下面和大家分享 Rust 语言的一些主要特点以及适用的场合&#xff0c;希望对大家有所帮助。北京木奇移动技术有…

Windows上使用FFmpeg实现本地视频推送模拟海康协议rtsp视频流

场景 Nginx搭建RTMP服务器FFmpeg实现海康威视摄像头预览&#xff1a; Nginx搭建RTMP服务器FFmpeg实现海康威视摄像头预览_nginx rtmp 海康摄像头_霸道流氓气质的博客-CSDN博客 上面记录的是使用FFmpeg拉取海康协议摄像头的rtsp流并推流到流媒体服务器。 如果在其它业务场景…

【Axure高保真原型】JS日期选择器筛选中继器表格

今天和大家分享JS日期选择器筛选中继器表格的原型模板&#xff0c;通过调用浏览器的日期选择器&#xff0c;所以可以获取真实的日历效果&#xff0c;具体包括哪一年二月份有29天&#xff0c;几号对应星期几&#xff0c;都是真实的&#xff0c;获取日期值后&#xff0c;通过交互…