【虫洞攻击检测】使用多层神经网络的移动自组织网络中的虫洞攻击检测研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

使用多层神经网络的移动自组织网络中的虫洞攻击检测:

能量、时间等对于提供的每个节点。这是对可能受到虫洞攻击的移动自组织网络的模拟。该MANET由神经网络配备,可以检测虫洞攻击并在节点之间发送数据时做出正确的决定。

虫洞攻击是一种网络安全威胁,它利用虚拟通道将网络中的数据包从一个地方迅速转移到另一个地方,从而绕过了正常的通信路径。虫洞攻击可能导致网络中的信息泄露、数据篡改或拒绝服务等问题。

为了检测虫洞攻击,研究人员提出了使用多层神经网络的移动自组织网络。移动自组织网络是一种无线传感器网络,其中的节点可以自主组织和协调工作,以实现数据传输和处理。

多层神经网络是一种人工神经网络结构,它由多个神经元层组成,每一层都与上一层和下一层的神经元相连。这种网络结构可以通过训练来学习和识别模式,从而实现虫洞攻击的检测。

在移动自组织网络中,每个节点通过与周围节点的通信来感知和传输数据。当节点之间的通信路径受到虫洞攻击时,由于虫洞攻击的快速传输特性,节点之间的通信延迟会显著增加。多层神经网络可以通过监测节点之间的通信延迟来检测虫洞攻击。

研究人员通过在实验环境中模拟虫洞攻击,并使用多层神经网络进行数据分析和训练,证明了这种方法的有效性。他们发现,多层神经网络可以准确地检测出虫洞攻击,并且能够在攻击发生之前提前发现。

总的来说,使用多层神经网络的移动自组织网络中的虫洞攻击检测研究为网络安全领域提供了一种新的方法。这种方法可以有效地检测和预防虫洞攻击,保护网络中的数据和通信安全。

📚2 运行结果

 

 

部分代码:

clc
clear
close all
load NeuralNetwork.mat
% VANET=make_net(100);
% n1=2;  % Attacker node 1
% n2=49; % Attacker node 2
% VANET=addWormhole(VANET,n1,n2);
% VANET=update_connections(VANET);
% orgNet=VANET;
load Exp_VANET.mat
answer=input('With (1) or whithout (0) Artificial Imnue? (0/1): ');
plot_network(VANET);
%% Packet Injection
NP=input('Number of packets (max=500)? ');
load packet.mat % Capasity of message (from 1 kb to 100 kb)
packet=packet(1:NP);
disp('----------------------------');
discard=0;
kk=1;
VANET_org=VANET;
stolen=0;
while isempty(packet)==0
    disp(['Packet Remaining: ', num2str(numel(packet))])
    msg=packet(1);
    packet(1,:)=[];
    kk=kk+1;
    Vectors=[];
    SD=randperm(VANET.Nodes,2);
    VANET.S=SD(1); % Source Node
    VANET.D=SD(2); % Destination Node

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]杨姣.移动Ad Hoc网络中虫洞攻击检测方法的研究[D].湖南大学[2023-08-12].DOI:10.7666/d.y1908299.

[2]李佳耕.Ad Hoc网络中虫洞攻击检测及响应机制研究[D].南京邮电大学[2023-08-12].DOI:CNKI:CDMD:2.1015.730949.

[3]王羽,张琨,刘健,等.Ad Hoc网络中的虫洞攻击与检测方法研究[J].计算机时代, 2014(2):5.DOI:10.3969/j.issn.1006-8228.2014.02.007.

[4]吕兆辉.无线传感器网络中虫洞攻击的检测和防御方案研究[D].桂林电子科技大学,2013.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/102112.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT赋能低代码开发:打造智能应用的双重引擎

摘要:本文摘自葡萄城低代码产品活字格的资深用户(格友超哥)所撰写的文章:《惊叹表现!活字格ChatGPT:低代码开发智能应用的巨大潜力》。 ChatGPT的functions函数使用方 自从OPENAI发布了最新的GPT引擎gpt-3…

indexDB入门到精通

前言 由于开发3D可视化项目经常用到模型,而一个模型通常是几m甚至是几十m的大小对于一般的服务器来讲加载速度真的十分的慢,为了解决这个加载速度的问题,我想到了几个本地存储的。 首先是cookie,cookie肯定是不行的,因为最多以只…

【项目实践】基于LSTM的一维数据扩展与预测

基于LSTM的一维数据拟合扩展 一、引(fei)言(hua) 我在做Sri Lanka生态系统服务价值计算时,中间遇到了一点小问题。从世界粮农组织(FAO)上获得Sri Lanka主要农作物产量和价格数据时,其中的主要作物Sorghum仅有2001-2006年的数据,而Millet只有…

常用的Selenium基础使用模板和简单封装

前言 近来又用上了 Selneium ,因为反复用到,所以在这里将一些常用的方法封装起来,方便后续的使用。 在这篇文章中,我们将探讨 Selenium 的基础模板和基础封装,以便更好地理解 Selenium 的使用方法。 在Selenium的使…

MyBatisPlus入门

入门&#xff1a; 依赖&#xff1a; <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-boot-starter</artifactId> <version>{version}</version> </dependency> 配置&#xff1a; ## 去除logo …

无涯教程-PHP - 标量函数声明

在PHP 7中&#xff0c;引入了一个新函数&#xff0c;即标量类型声明。标量类型声明有两个选项- Coercive - 强制性是默认模式。Strict - 严格模式必须明确提示。 可以使用上述模式强制执行以下类型的函数参数- intfloatbooleanstringinterfacesarraycallable 强制模…

opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()

前面我们已经了解了Harris函数来进行角点检测&#xff0c;因为角点的特性&#xff0c;这些角点在图像旋转的时候也可以被检测到。但是&#xff0c;如果我们放大或缩小图像时&#xff0c;就可能会丢失图像的某些部分&#xff0c;甚至有可能增加角点的质量。这种损失的现象需要一…

Revit 3D高效处理:cad exchanger sdk 3.21 Crack

3D 格式概述&#xff1a;Revit Revit 已成为寻求高效、准确的建筑信息建模的专业人士的首选解决方案。在这篇引人入胜的功能概述中了解 Revit 的特性和影响。 什么是Revit&#xff1f; Autodesk Revit 是一款流行的 CAD 软件&#xff0c;重点关注 BIM&#xff0c;被建筑师、工…

C++入门:引用是什么

目录 1.引用的概念 2.引用的特征 3.常引用 4.引用使用场景 5.传值&#xff0c;传引用效率比较 6.引用与指针的区别 1.引用的概念 引用不是新定义一个变量&#xff0c;而是给已存在变量取了一个别名&#xff0c;编译器不会为引用变量开辟内存空 间&#xff0c;它和它引用…

AUTBUS全球首发,东土与您相约工博会

2023年中国国际工业博览会将于9月19日至9月23日在上海盛大举办。作为工博会重点参展企业之一&#xff0c;东土科技将重磅亮相6.1号馆工业自动化展&#xff08;展位号&#xff1a;6.1H-D137&#xff09;。 值得一提的是&#xff0c;AUTBUS 国际标准作为全球第一个基于时间敏感网…

LLMs 缩放法则和计算最优模型Scaling laws and compute-optimal models

在上一个视频中&#xff0c;您探讨了训练大型语言模型的计算挑战。在这里&#xff0c;您将了解关于模型大小、训练、配置和性能之间关系的研究&#xff0c;以确定模型需要多大。请记住&#xff0c;预训练期间的目标是最大化模型的学习目标性能&#xff0c;即在预测令牌时最小化…

LeetCode--HOT100题(38)

目录 题目描述&#xff1a;226. 翻转二叉树&#xff08;简单&#xff09;题目接口解题思路代码 PS: 题目描述&#xff1a;226. 翻转二叉树&#xff08;简单&#xff09; 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 LeetCode做题链…

pytorch 入门1-tensor 广播 view reshape

tensor 的四则运算broadcast import torch import numpy as np # 张量tensor 随机初始化 x torch.rand(4,3) print(x) y torch.randn(4,3) print(y)# 初始化全零 张量 a torch.zeros((4,4),dtypetorch.long) print(a) #初始化全一 张量 b torch.ones(4,4) print(b) c tor…

多客户企业选择拥有哪些功能的CRM系统?

管理海量客户信息对于每一家企业都是巨大的挑战。粗放式的管理客户资料是对资源的一种浪费&#xff0c;让很多有意向的高价值客户流失。客户比较多&#xff0c;有什么CRM系统推荐吗&#xff1f;帮助企业轻松地跟进客户&#xff0c;提高销售效率&#xff1f; 1.易于使用 首先是…

macOS Ventura 13.5.1(22G90)发布(附黑/白苹果系统镜像地址)

系统镜像下载&#xff1a;百度&#xff1a;黑果魏叔 系统介绍 黑果魏叔 8 月 18 日消息&#xff0c;苹果今日向 Mac 电脑用户推送了 macOS 13.5.1 更新&#xff08;内部版本号&#xff1a;22G90&#xff09;&#xff0c;本次更新距离上次发布隔了 24 天。 本次更新重点修复了…

Docker部署MongoDB 5.0.5

1、查看目录 rootwielun:~# tree mongo mongo ├── conf │ └── mongod.conf ├── data ├── docker-compose.yml └── logrootwielun:~# cd mongo rootwielun:~/mongo# chmod 777 log2、配置docker-compose.yml rootwielun:~/mongo# cat docker-compose.yml ve…

【ES6】—【必备知识】—扩展运算符与rest参数

一、扩展运算符 1. 定义&#xff1a;把数组或类数组展开成用逗号隔开的值 function foo(a,b,c) {console.log(a,b,c) } let arr [1,2,3] foo(...arr)2. 把两个数组合并 2-1. ES5 实现 let arr1 [1,2,3] let arr2 [4,5,6] Array.prototype.push.apply(arr1, arr2) consol…

多线程+隧道代理:提升爬虫速度

在进行大规模数据爬取时&#xff0c;爬虫速度往往是一个关键问题。本文将介绍一个提升爬虫速度的秘密武器&#xff1a;多线程隧道代理。通过合理地利用多线程技术和使用隧道代理&#xff0c;我们可以显著提高爬虫的效率和稳定性。本文将为你提供详细的解决方案和实际操作价值&a…

文心一言 VS 讯飞星火 VS chatgpt (80)-- 算法导论7.4 5题

五、如果用go语言&#xff0c;当输入数据已经“几乎有序”时&#xff0c;插入排序速度很快。在实际应用中&#xff0c;我们可以利用这一特点来提高快速排序的速度。当对一个长度小于 k 的子数组调用快速排序时&#xff0c;让它不做任何排序就返回。当上层的快速排序调用返回后&…

国产精品:讯飞星火最新大模型V2.0

大家好&#xff0c;我是爱编程的喵喵。双985硕士毕业&#xff0c;现担任全栈工程师一职&#xff0c;热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…