R语言绘制精美图形 | 火山图 | 学习笔记

一边学习,一边总结,一边分享!

教程图形

前言

最近的事情较多,教程更新实在是跟不上,主要原因是自己没有太多时间来学习和整理相关的内容。一般在下半年基本都是非常忙,所有一个人的精力和时间有限,只能顾一方面。所以,长时间不更新是很正常的,若在看本教程的你,若有愿意分享的教程,可以投稿,我们也欢迎投稿。

今天,来分享一下近两天自己的学习笔记。火山图,此图也是实用性很强,80%的同学应该可以用得到,今天分享的只是学习笔记的一部分,后面会逐渐完善。既然是学习笔记,那么我们也有参考的教程,我们也会再文末附上参考的教程,大家也可以直接到对应教程中学习。

原文访问链接:
https://mp.weixin.qq.com/s/mQ9TaQu3b3waNHtu8gfQtw

设置路劲

setwd("E:\\小杜的生信筆記\\2023\\20231117-火山图")
rm(list = ls())

加载相关包

library(ggplot2)
library(RColorBrewer)
library(ggrepel)
library(RUnit)
library(ggforce)
library(tidyverse)
library(ggpubr)
library(ggprism)
library(paletteer)

1、加载及处理数据

加载数据

df <- read.csv("all.limmaOut.csv",header = T,row.names = 1)
head(df)

1.2 数据分类

使用runif对添加数据logCMP,用于后续的分析

df$logCMP <- stats::runif(12035, 0, 16)

对数据进行UpDown分类
分类标准:

  1. P值小于0.05
  2. |logFC| >= 1
    筛选标准可以进行自己的需求进行设置
##'@判断基因up or downdf$Group <- factor(ifelse(df$P.Value < 0.05 & abs(df$logFC) >= 1,ifelse(df$logFC >= 1, 'Up','Down'),'NotSignifi'))
df[1:10,1:8]table(df$Group)


添加基因名,用于后续的火山图显示基因名使用

df$gene <- row.names(df)

1.3 设置主题

可根据自己需求进行设置,或是统一在这里设置即可。

##'@主题
mytheme <- theme(panel.background = element_rect(fill = NA),plot.margin = margin(t=10,r=10,b=5,l=5,unit = "mm"),# axis.ticks.y = element_blank(),axis.ticks.x = element_line(colour = "grey40",size = 0.5),axis.line = element_line(colour = "grey40",size = 0.5),axis.text.x = element_text(size = 10),axis.title.x = element_text(size = 12),panel.grid.major.y = element_line(colour = NA,size = 0.5),panel.grid.major.x = element_blank())

2 绘制基础差异基因火山图

2.1 绘制基础图形

####'@绘制基础图形
ggplot(df, aes(x = logFC, y = -log10(P.Value), colour = Group))+geom_point(size =4, shape = 20, stroke = 0.5)+#控制最人气泡和最小气泡,调节气泡相对大小scale_size(limits = c(2,16))+##设置颜色#scale_fill_manual(values = c("#fe0000","#13fc00","#bdbdbd"))+scale_color_manual(values=c('steelblue','gray','brown'))+ylab('-log10 (Pvalue)')+xlab('log2 (FoldChange)')+## 增加横竖线条geom_vline(xintercept = c(-1,1),lty = 2, col = "black", lwd = 0.5)+geom_hline(yintercept = -log10(0.05), lty = 2, col = "black", lwd = 0.5)

难点代码解读

1.增加横竖线条

geom_vline()添加垂直辅助线,xintercept表示辅助线的位置,lty表示线的类型(虚-实),col表示线的颜色,lwd表示线的粗细

geom_hline()添加水平辅助线,yintercept表示辅助线的位置,lty表示线的类型(虚-实),col表示线的颜色,lwd表示线的粗细

2.2 设置火山图散点的大小

在上面的图形中,火山图中所有的使用size = logCMP进行修改

ggplot(df, aes(x = logFC, y = -log10(P.Value), size = logCMP,colour = Group))+geom_point(shape = 20, stroke = 0.5)+#控制最人气泡和最小气泡,调节气泡相对大小scale_size(limits = c(2,16))+##设置颜色#scale_fill_manual(values = c("#fe0000","#13fc00","#bdbdbd"))+scale_color_manual(values=c('steelblue','gray','brown'))+ylab('-log10 (Pvalue)')+xlab('log2 (FoldChange)')+## 增加横竖线条geom_vline(xintercept = c(-1,1),lty = 2, col = "black", lwd = 0.5)+geom_hline(yintercept = -log10(0.05), lty = 2, col = "black", lwd = 0.5)

2.2 调整火山图的X轴坐标

调整X轴的取值范围
有时候,我们在绘制火山图时,会出现X或Y轴坐标较大的现象,对火山图整体美观性较差,那么适当限制基因调整图形美观.

###'@查看差异基因最大值是多少
###'@此步根据自己的火山图进行设置是否有需要设置
max(abs(df$logFC)) 

使用xlim()函数进行修改

ggplot(df, aes(x = logFC, y = -log10(P.Value), size = logCMP,colour = Group))+geom_point(shape = 20, stroke = 0.5)+#控制最人气泡和最小气泡,调节气泡相对大小scale_size(limits = c(2,16))+##设置颜色#scale_fill_manual(values = c("#fe0000","#13fc00","#bdbdbd"))+scale_color_manual(values=c('steelblue','gray','brown'))+ylab('-log10 (Pvalue)')+xlab('log2 (FoldChange)')+## 增加横竖线条geom_vline(xintercept = c(-1,1),lty = 2, col = "black", lwd = 0.5)+geom_hline(yintercept = -log10(0.05), lty = 2, col = "black", lwd = 0.5)+##设置X轴的取值范围xlim(c(-1.5,1.5))

2.3 修改图中图例

使用ggplot()绘图最方便就是修改图形或调整图形很方便,但是很多时间都需要我们自己不断的练习,加深自己印象。
使用label()修改图中标题和图例

ggplot(df, aes(x = logFC, y = -log10(P.Value), size = logCMP,colour = Group))+geom_point( shape = 20, stroke = 0.5)+#控制最人气泡和最小气泡,调节气泡相对大小scale_size(limits = c(2,16))+##设置颜色#scale_fill_manual(values = c("#fe0000","#13fc00","#bdbdbd"))+scale_color_manual(values=c('steelblue','gray','brown'))+# ylab('-log10 (Pvalue)')+# xlab('log2 (FoldChange)')+labs(x = 'log2 (FoldChange)',y = '-log10 (Pvalue)',## 图例fill = "",size = "")+
# ## 增加横竖线条geom_vline(xintercept = c(-1,1),lty = 2, col = "black", lwd = 0.5)+geom_hline(yintercept = -log10(0.05), lty = 2, col = "black", lwd = 0.5)+## 设置主题theme_classic(base_line_size = 0.8  ## 设置坐标轴的粗细)+## 设置图例大小guides(fill = guide_legend(override.aes = list(size = 8)))

2.4 添加基因名

使用一下命令添加标记基因名字

#'@添加关注的点的基因名geom_text_repel(data = df[df$P.Value < 0.05 & abs(df$logFC) > 1,],aes(label = gene),size = 4.5,color = "black",segment.color = "black", show.legend = FALSE)
ggplot(df, aes(x = logFC, y = -log10(P.Value), size = logCMP,colour = Group))+geom_point( shape = 20, stroke = 0.5)+#控制最人气泡和最小气泡,调节气泡相对大小scale_size(limits = c(2,16))+##设置颜色#scale_fill_manual(values = c("#fe0000","#13fc00","#bdbdbd"))+scale_color_manual(values=c('steelblue','gray','brown'))+ylab('-log10 (Pvalue)')+xlab('log2 (FoldChange)')+
#'@添加关注的点的基因名geom_text_repel(data = df[df$P.Value < 0.05 & abs(df$logFC) > 1,],aes(label = gene),size = 4.5,color = "black",segment.color = "black", show.legend = FALSE)+# ## 增加横竖线条geom_vline(xintercept = c(-1,1),lty = 2, col = "black", lwd = 0.5)+geom_hline(yintercept = -log10(0.05), lty = 2, col = "black", lwd = 0.5)+## 设置主题theme_classic(base_line_size = 0.8  ## 设置坐标轴的粗细)+## 设置图例大小guides(fill = guide_legend(override.aes = list(size = 8)))

2.5 图形美化

ggplot(df, aes(x = logFC, y = -log10(P.Value), size = logCMP,colour = Group))+geom_point( shape = 20, stroke = 0.5)+#控制最人气泡和最小气泡,调节气泡相对大小scale_size(limits = c(2,16))+##设置颜色#scale_fill_manual(values = c("#fe0000","#13fc00","#bdbdbd"))+scale_color_manual(values=c('steelblue','gray','brown'))+ylab('-log10 (Pvalue)')+xlab('log2 (FoldChange)')+
#'@添加关注的点的基因名geom_text_repel(data = df[df$P.Value < 0.05 & abs(df$logFC) > 1,],aes(label = gene),size = 3.5,color = "black",segment.color = "black", show.legend = FALSE)+# ## 增加横竖线条geom_vline(xintercept = c(-1,1),lty = 2, col = "black", lwd = 0.5)+geom_hline(yintercept = -log10(0.05), lty = 2, col = "black", lwd = 0.5)+## 设置主题theme_classic(base_line_size = 0.8  ## 设置坐标轴的粗细)+## 设置图例大小guides(fill = guide_legend(override.aes = list(size = 5)))+mytheme##设置主题# theme(axis.title.x = element_text(color = "black", #                                   size = 10,#                                   face = "bold"),#       axis.title.y = element_text(color = "black",#                                   size = 10),#       ##'@设置图例#       legend.text = element_text(color = "red",#                                  size = 8,#                                  face = "bold"))

解读

  theme(axis.title.x = element_text(color = "black",size = 10,face = "bold"),axis.title.y = element_text(color = "black",size = 10),##'@设置图例legend.text = element_text(color = "red",size = 8,face = "bold"))
  1. X轴、Y轴字体调整axis.title.x/axis.title.y
    colorsizebold表示;颜色、大小、加粗
  2. 图例legend.text

3 渐变火山图绘制

该教程在前面的文章中已经发出,感兴趣的可以自己查看。教程链接差异表达基因火山图绘制

3.1 数据处理

head(df)

把各列数据整理成画图所需的格式

### Score列、或是DESep输出数据
fc <- df$AveExpr
head(fc)
names(fc) <- rownames(dat)  ## 匹配数据### -log10P列p <- dat$`-log10P`
names(p) <- names(dat)

3.2 自定义颜色

mycol <- c("#B2DF8A","#FB9A99","#33A02C","#E31A1C","#B15928","#6A3D9A","#CAB2D6","#A6CEE3","#1F78B4","#FDBF6F","#999999","#FF7F00")
cols.names <- unique(df$Group)
cols.code <- mycol[1:length(cols.names)]
names(cols.code) <- cols.names
col <- paste(cols.code[as.character(df$Group)],"BB", sep="")
i <-  df$Group %in% c("Up","Not","Down")###'@-log10P列
p <- -log10(df$P.Value)
names(p) <- names(df)###'@size列
size = df$logCMP
names(size) <- rownames(df)###'@pval列
pp <- df$P.Value
names(pp) <- rownames(df)

3.3 绘图

plot(df, p, log = 'y',col = paste(cols.code[as.character(df$logCMP)], "BB", sep = ""),pch = 16,# ylab = bquote(~Log[10]~"P value"), # xlab = "Enrich score",# 用小泡泡画不感兴趣的pathwaycex = ifelse(i, size,1))


# 添加横线
abline(h=1/0.05, lty=2, lwd=1)
abline(h=1/max(pp[which(p.adjust(pp, "bonf") < 0.001)]), lty=3, lwd=1) #标黑圈和文字的阈值# 添加竖线
abline(v=-0.5, col="blue", lty=2, lwd=1)
abline(v=0.5, col="red", lty=2, lwd=1


w <- which(p.adjust(pp,"bonf") < 0.001) #bonferroni correction
points(fc[w], p[w], pch=1, cex=ifelse(i[w], dat[w,"size"],1))
## Add an alpha value to a colour
add.alpha <- function(col, alpha=1){if(missing(col))stop("Please provide a vector of colours.")apply(sapply(col, col2rgb)/255, 2, function(x) rgb(x[1], x[2], x[3], alpha=alpha))  
}
## 标记最显著的基因
cols.alpha <- add.alpha(cols.code[dat[w,]$group], alpha=0.6)
text(fc[w], p[w], names(fc[w]), pos=4, #1, 2, 3 and 4, respectively indicate positions below, to the left of, above and to the right of the specified coordinates.col=cols.alpha)


# 添加size的图例
par(xpd = TRUE) #all plotting is clipped to the figure region
f <- c(0.01,0.05,0.1,0.25)
s <- sqrt(f*50)
legend("topright",inset=c(-0.2,0), #把图例画到图外legend=f, pch=16, pt.cex=s, bty='n', col=paste("#88888888"))# 添加pathway颜色的图例
legend("bottomright", inset=c(-0.25,0), #把图例画到图外pch=16, col=cols.code, legend=cols.names, bty="n")

4. 筛选Top5的差异基因进行标记

4.1 筛选的down和up前5个(或N个)基因进行标记

##down
down <- filter(df, Group == "Down") %>% distinct(gene, .keep_all = T) %>%top_n(5, -log10(P.Value))##up top 5
up <- filter(df, Group == "Up") %>% distinct(gene, .keep_all = T) %>%top_n(5, -log10(P.Value))

4.2绘图

ggplot(df, aes(x = logFC, y = -log10(P.Value), size = logCMP,colour = Group))+geom_point( shape = 20, stroke = 0.5)+#控制最人气泡和最小气泡,调节气泡相对大小scale_size(limits = c(2,16))+##设置颜色#scale_fill_manual(values = c("#fe0000","#13fc00","#bdbdbd"))+scale_color_manual(values=c('steelblue','gray','brown'))+#scale_colour_manual(name = "", values = alpha(c("#EB4232","#d8d8d8","#2DB2EB"), 0.7)) +##'@X轴和Y轴限制# scale_x_continuous(limits = c(-12, 12),breaks = seq(-12, 12, by = 4)) + # scale_y_continuous(expand = expansion(add = c(0, 0)),limits = c(0, 180),breaks = seq(0, 180, by = 20)) + ylab('-log10 (Pvalue)')+xlab('log2 (FoldChange)')+
#'@添加关注的点的基因名
#'@添加down top genegeom_text_repel(data = up,aes(x = logFC, y = -log10(P.Value), label = gene),seed = 123,color = 'black',show.legend = FALSE, min.segment.length = 0,#始终为标签添加指引线段;若不想添加线段,则改为Infsegment.linetype = 1, #线段类型,1为实线,2-6为不同类型虚线force = 2,#重叠标签间的排斥力force_pull = 2,#标签和数据点间的吸引力size = 4,box.padding = unit(2, "lines"),point.padding = unit(1, "lines"),#点到线的距离max.overlaps = Inf)+##'@添加up top genegeom_text_repel(data = down,aes(x = logFC, y = -log10(P.Value), label = gene),seed = 123,color = 'black',show.legend = FALSE, min.segment.length = 0,#始终为标签添加指引线段;若不想添加线段,则改为Infsegment.linetype = 1, #线段类型,1为实线,2-6为不同类型虚线force = 6,#重叠标签间的排斥力force_pull = 1,#标签和数据点间的吸引力size = 4,box.padding = unit(2, "lines"),point.padding = unit(1, "lines"),#点到线的距离max.overlaps = Inf)+# ## 增加横竖线条geom_vline(xintercept = c(-1,1),lty = 2, col = "black", lwd = 0.5)+geom_hline(yintercept = -log10(0.05), lty = 2, col = "black", lwd = 0.5)+## 设置主题theme_classic(base_line_size = 0.8  ## 设置坐标轴的粗细)+## 设置图例大小guides(fill = guide_legend(override.aes = list(size = 5)))+mytheme

4.3 对齐标签

需要重新进行调整坐标信息,此坐标位置,可以根据自己需求进行调整

nudge_x_up = 2.5 - up$logFC
nudge_x_down = -2.5 - down$logFC

通过添加nudge_x信息即可实现此功能

ggplot(df, aes(x = logFC, y = -log10(P.Value), size = logCMP,colour = Group))+geom_point( shape = 20, stroke = 0.5)+#控制最人气泡和最小气泡,调节气泡相对大小scale_size(limits = c(2,16))+##设置颜色#scale_fill_manual(values = c("#fe0000","#13fc00","#bdbdbd"))+scale_color_manual(values=c('steelblue','gray','brown'))+#scale_colour_manual(name = "", values = alpha(c("#EB4232","#d8d8d8","#2DB2EB"), 0.7)) +##'@X轴和Y轴限制# scale_x_continuous(limits = c(-12, 12),breaks = seq(-12, 12, by = 4)) + # scale_y_continuous(expand = expansion(add = c(0, 0)),limits = c(0, 180),breaks = seq(0, 180, by = 20)) + ylab('-log10 (Pvalue)')+xlab('log2 (FoldChange)')+
#'@添加关注的点的基因名
#'@添加down top genegeom_text_repel(data = up,aes(x = logFC, y = -log10(P.Value), label = gene),seed = 123,color = 'black',show.legend = FALSE, min.segment.length = 0,#始终为标签添加指引线段;若不想添加线段,则改为Infsegment.linetype = 1, #线段类型,1为实线,2-6为不同类型虚线segment.color = 'black', #线段颜色segment.alpha = 0.5, #线段不透明度nudge_x = nudge_x_up, #标签x轴起始位置调整direction = "y", #按y轴调整标签位置方向,若想水平对齐则为xhjust = 0, #对齐标签:0右对齐,1左对齐,0.5居中force = 2,#重叠标签间的排斥力force_pull = 2,#标签和数据点间的吸引力size = 4,box.padding = unit(0.1, "lines"),point.padding = unit(0.1, "lines"),max.overlaps = Inf)+##'@添加up top genegeom_text_repel(data = down,aes(x = logFC, y = -log10(P.Value), label = gene),seed = 123,color = 'black',show.legend = FALSE, min.segment.length = 0,#始终为标签添加指引线段;若不想添加线段,则改为Infsegment.linetype = 1, #线段类型,1为实线,2-6为不同类型虚线segment.color = 'black', #线段颜色segment.alpha = 0.5, #线段不透明度nudge_x = nudge_x_down, #标签x轴起始位置调整direction = "y", #按y轴调整标签位置方向,若想水平对齐则为xhjust = 1, #对齐标签:0右对齐,1左对齐,0.5居中force = 2,#重叠标签间的排斥力force_pull = 2,#标签和数据点间的吸引力size = 4,box.padding = unit(0.1, "lines"),point.padding = unit(0.1, "lines"),max.overlaps = Inf)+# ## 增加横竖线条geom_vline(xintercept = c(-1,1),lty = 2, col = "black", lwd = 0.5)+geom_hline(yintercept = -log10(0.05), lty = 2, col = "black", lwd = 0.5)+## 设置主题theme_classic(base_line_size = 0.8  ## 设置坐标轴的粗细)+## 设置图例大小guides(fill = guide_legend(override.aes = list(size = 5)))

4.4 添加箭头

top5 <- filter(df, Group != "Stable") %>% distinct(gene, .keep_all = T) %>% top_n(5, -log10(P.Value))
ggplot(df, aes(x = logFC, y = -log10(P.Value), size = logCMP,colour = Group))+geom_point( shape = 20, stroke = 0.5)+#控制最人气泡和最小气泡,调节气泡相对大小scale_size(limits = c(2,16))+##设置颜色#scale_fill_manual(values = c("#fe0000","#13fc00","#bdbdbd"))+scale_color_manual(values=c('steelblue','gray','brown'))+#scale_colour_manual(name = "", values = alpha(c("#EB4232","#d8d8d8","#2DB2EB"), 0.7)) +##'@X轴和Y轴限制# scale_x_continuous(limits = c(-12, 12),breaks = seq(-12, 12, by = 4)) + # scale_y_continuous(expand = expansion(add = c(0, 0)),limits = c(0, 180),breaks = seq(0, 180, by = 20)) + ylab('-log10 (Pvalue)')+xlab('log2 (FoldChange)')+##'@添加箭头geom_text_repel(data = top5,aes(x = logFC, y = -log10(P.Value), label = gene),seed = 2345,color = 'black',show.legend = FALSE, min.segment.length = 1,#始终为标签添加指引线段;若不想添加线段,则改为Infarrow = arrow(length = unit(0.02, "npc"),type = "open", ends = "last"),force = 10,force_pull = 1,size = 4,box.padding = 2,point.padding = 1,max.overlaps = Inf)

5 渐变火山图

5.1 加载所需的包

#devtools::install_github("BioSenior/ggvolcano")
library(ggVolcano)
library(RColorBrewer)

5.2 绘图

df[1:10,1:9]

gradual_volcano(df, x = "logFC", y = "P.Value",label = "gene", label_number = 5, ## 显示top5的基因名output = FALSE)


修改显示颜色

gradual_volcano(df, x = "logFC", y = "P.Value",label = "gene", fills = brewer.pal(5, "RdYlBu"),colors = brewer.pal(8, "RdYlBu"),label_number = 5, ## 显示top5的基因名output = FALSE)


使用RColorBrewer进行修改颜色

gradual_volcano(df, x = "logFC", y = "P.Value",label = "gene", label_number = 5, ## 显示top5的基因名output = FALSE)+ggsci::scale_color_gsea()+ggsci::scale_fill_gsea()

5.3 GO通路火山图

或你有相关GO注释文件,你可以提供给相关的数据,进行绘制。

在这里,我们不在演示,若你需要,可以根据原文的方法进行绘制图形。

ata("term_data")
#  Gene.names   term
#1       TDP1 myelin
#2    YDR387C myelin
#3      MAM33 myelin
#4       BAR1 myelin
#5       IQG1 myelin
#6       AIM3 myelinp1 <- term_volcano(deg_data, term_data,x = "log2FoldChange", y = "padj",label = "row", label_number = 10, output = FALSE)
#修改散点颜色和描边
library(RColorBrewer)
deg_point_fill <- brewer.pal(5, "RdYlBu")
names(deg_point_fill) <- unique(term_data$term)
p2 <- term_volcano(data, term_data,x = "log2FoldChange", y = "padj",normal_point_color = "#75aadb",deg_point_fill = deg_point_fill,deg_point_color = "grey",legend_background_fill = "#deeffc",label = "row", label_number = 10, output = FALSE)

本教程参考链接:<学习者可以直接访问原文链接>

  1. https://mp.weixin.qq.com/s/wkUxY_zzYnCDwAPD0btHow
  2. https://mp.weixin.qq.com/s/R6yb-sFKRkzGuACs61TbsQ
  3. https://mp.weixin.qq.com/s/TWI-Tt741Gqe9ERzZr23yg
  4. https://mp.weixin.qq.com/s/yVahDcmuUU7cPikTt4ahNg

往期文章:

1. 复现SCI文章系列专栏

2. 《生信知识库订阅须知》,同步更新,易于搜索与管理。

3. 最全WGCNA教程(替换数据即可出全部结果与图形)

  • WGCNA分析 | 全流程分析代码 | 代码一

  • WGCNA分析 | 全流程分析代码 | 代码二

  • WGCNA分析 | 全流程代码分享 | 代码三

  • WGCNA分析 | 全流程分析代码 | 代码四

  • WGCNA分析 | 全流程分析代码 | 代码五(最新版本)


4. 精美图形绘制教程

  • 精美图形绘制教程

5. 转录组分析教程

转录组上游分析教程[零基础]

小杜的生信筆記 ,主要发表或收录生物信息学的教程,以及基于R的分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/195495.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

「Verilog学习笔记」使用8线-3线优先编码器Ⅰ实现16线-4线优先编码器

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点&#xff0c;刷题网站用的是牛客网 分析 当EI10时、U1禁止编码&#xff0c;其输出端Y为000&#xff0c;GS1、EO1均为0。同时EO1使EI00&#xff0c;U0也禁止编码&#xff0c;其输出端及GS0、EO0均为0。由电路…

Postman内置动态参数以及自定义的动态参数

近期在复习Postman的基础知识&#xff0c;在小破站上跟着百里老师系统复习了一遍&#xff0c;也做了一些笔记&#xff0c;希望可以给大家一点点启发。 一&#xff09;内置动态参数 {{$timestamp}} 生成当前时间的时间戳{{$randomInt}} 生成0-1000之间的随机数{{$guid}} 生成随…

Ansys Electronics Desktop仿真——HFSS线圈寄生电阻,电感

利用ANSYS Electronics Desktop&#xff0c;可在综合全面、易于使用的设计平台中集成严格的电磁场分析和系统电路仿真。按需求解器技术让您能集成电磁场仿真器和电路及系统级仿真&#xff0c;以探索完整的系统性能。 HFSS&#xff08;High Frequency Structure Simulator&#…

matplotlib 绘制双纵坐标轴图像

效果图&#xff1a; 代码&#xff1a; 由于使用了两组y axis&#xff0c;如果直接使用ax.legend绘制图例&#xff0c;会得到两个图例。而下面的代码将两个图例合并显示。 import matplotlib.pyplot as plt import numpy as npdata np.random.randint(low0,high5,size(3,4)) …

串口通信原理及应用

Content 1. 前言介绍2. 连接方式3. 数据帧格式4. 代码编写 1. 前言介绍 串口通信是一种设备间非常常用的串行接口&#xff0c;以比特位的形式发送或接收数据&#xff0c;由于成本很低&#xff0c;容易使用&#xff0c;工程师经常使用这种方式来调试 MCU。 串口通信应用广泛&a…

设计模式-备忘录模式-笔记

动机&#xff08;Motivation&#xff09; 在软件构建过程中&#xff0c;某些对象的状态在转换过程中&#xff0c;可能由于某种需要&#xff0c;要求程序能够回溯到对象之前处于某个点时的状态。如果使用一些公有接口来让其他对象得到对象的状态&#xff0c;便会暴露对象的细节…

【AI视野·今日Robot 机器人论文速览 第六十五期】Mon, 30 Oct 2023

AI视野今日CS.Robotics 机器人学论文速览 Mon, 30 Oct 2023 Totally 18 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Robotics Papers Gen2Sim: Scaling up Robot Learning in Simulation with Generative Models Authors Pushkal Katara, Zhou Xian, Katerina F…

在listener.ora配置文件中配置listener 1527的监听并且使用tnsnames连接测试

文章目录 前言&#xff1a;一、命令语句实现1、监听介绍2、编辑 listener.ora 文件&#xff1a;寻找配置文件对配置文件进行配置 3、重启监听4、配置TNS 二、图形化界面实现1、listener.ora文件配置2、tnsnames.ora文件配置 三、测试连接 前言&#xff1a; 命令实现和图形化实…

Mysql数据库 16.SQL语言 数据库事务

一、数据库事务 数据库事务介绍——要么全部成功要么全部失败 我们把完成特定的业务的多个数据库DML操作步骤称之为一个事务 事务——就是完成同一个业务的多个DML操作 例&#xff1a; 数据库事务四大特性 原子性&#xff08;A&#xff09;&#xff1a;一个事务中的多个D…

基于JavaWeb+SSM+购物系统微信小程序的设计和实现

基于JavaWebSSM购物系统微信小程序的设计和实现 源码获取入口前言主要技术系统设计功能截图Lun文目录订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 前言 第一章 绪 论 1.1选题背景 互联网是人类的基本需求&#xff0c;特别是在现代社会&#xff0c;…

亲测一款超实用的在线制作产品册工具,一看就会

最近&#xff0c;我一直在寻找一款简单易用的在线制作产品册工具&#xff0c;终于让我找到了一个超实用的神器&#xff01;这款工具不仅功能强大&#xff0c;而且操作简单&#xff0c;一看就会。 首先&#xff0c;这款工具提供了丰富的模板和素材&#xff0c;用户可以根据自己的…

自动驾驶汽车:人工智能最具挑战性的任务

据说&#xff0c;自动驾驶汽车是汽车行业梦寐以求的状态&#xff0c;将彻底改变交通运输业。就在几年前&#xff0c;对自动驾驶汽车的炒作风靡一时&#xff0c;那么到底发生了什么呢&#xff1f;这么多公司吹嘘到2021年我们将迎来的无人驾驶汽车革命在何处&#xff1f;事实证明…

基于深度学习的活体人脸识别检测算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1. 活体人脸识别检测算法概述 4.2. 深度学习在活体人脸识别检测中的应用 4.3. 算法流程 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 …

【论文阅读】A Survey on Video Diffusion Models

视频扩散模型&#xff08;Video Diffusion Model&#xff09;最新综述GitHub 论文汇总-A Survey on Video Diffusion Models。 paper&#xff1a;[2310.10647] A Survey on Video Diffusion Models (arxiv.org) 0. Abstract 本文介绍了AIGC时代视频扩散模型的全面回顾。简要介…

C++网络编程库编写自动爬虫程序

首先&#xff0c;我们需要使用 C 的网络编程库来编写这个爬虫程序。以下是一个简单的示例&#xff1a; #include <iostream> #include <string> #include <curl/curl.h> #include <openssl/ssl.h>const char* proxy_host "duoip"; const in…

.NET8.0 AOT 经验分享 FreeSql/FreeRedis/FreeScheduler 均已通过测试

2023年11月15日&#xff0c;对.net的开发圈是一个重大的日子&#xff0c;.net 8.0正式版发布。 圈内已经预热了有半个月有余&#xff0c;性能不断超越&#xff0c;开发体验越来越完美&#xff0c;早在.net 5.0的时候就各种吹风Aot编译&#xff0c;直到6.0 7.0使用仍然比较麻烦…

SQL学习之增删改查

文章目录 数据库数据类型建表create table插入数据insert into查询数据select from修改数据update set删除数据delete from备份ctas结果插入iis截断表 truncate table修改表结构alter table添加注释 注&#xff1a;本文的SQL语法是基于Oracle数据库操作的&#xff0c;但是基本的…

常见面试题-HashMap源码

了解 HashMap 源码吗&#xff1f; 参考文章&#xff1a;https://juejin.cn/post/6844903682664824845 https://blog.51cto.com/u_15344989/3655921 以下均为 jdk1.8 的 HashMap 讲解 首先&#xff0c;HashMap 的底层结构了解吗&#xff1f; 底层结构为&#xff1a;数组 链…

Genio 500_MT8385安卓核心板:功能强大且高效

Genio 500(MT8385)安卓核心板是一款功能强大且高效的AIoT平台&#xff0c;内置的AI处理器(APU)工作频率可达500MHz&#xff0c;支持深度学习、神经网络加速和计算机视觉应用。配合高达2500万像素的摄像头&#xff0c;可以为AI相机应用提供清晰、精确的图像&#xff0c;如人脸识…

【Redis】springboot整合redis(模拟短信注册)

要保证redis的服务器处于打开状态 上一篇&#xff1a; 基于session的模拟短信注册 https://blog.csdn.net/m0_67930426/article/details/134420531 整个流程是&#xff0c;前端点击获取验证码这个按钮&#xff0c;后端拿到这个请求&#xff0c;通过RandomUtil 工具类的方法生…