早上好,我的leetcode 【hash】(第二期)

写在前面:坚持才是最难的事情

C++代码还是不方便写,改用python了,TAT


文章目录

  • 1.两数之和
  • 49. 字母异位词分组
  • 128.最长连续序列

1.两数之和

你好,梦开始的地方~

在这里插入图片描述
https://leetcode.cn/problems/two-sum/description/?envType=study-plan-v2&envId=top-100-liked

直接两个for循环

class Solution {
public:vector<int> twoSum(vector<int>& nums, int target) {int size = nums.size();for (int i = 0; i < size; i++ ){for (int j = i + 1; j < size; j++){if (nums[i] + nums[j] == target){return {i ,j};}}}return {};}
};

时间复杂度:O( N 2 N^2 N2),其中N是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次
空间复杂度:O (1)。

最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。

class Solution {
public:vector<int> twoSum(vector<int>& nums, int target) {unordered_map<int, int> hashtable;for (int i = 0; i < nums.size(); ++i){auto it = hashtable.find(target - nums[i]);// 如果找到了就返回if (it != hashtable.end()){return {it->second, i};}// 都保存这个数的位置hashtable[nums[i]] = i;}return {};}
};

49. 字母异位词分组

在这里插入图片描述
https://leetcode.cn/problems/group-anagrams/description/?envType=study-plan-v2&envId=top-100-liked

思路:将字符串排序,字符串排序后相同的放在一起

由于互为字母异位词的两个字符串包含的字母相同,因此对两个字符串分别进行排序之后得到的字符串一定是相同的,故可以将排序之后的字符串作为哈希表的键。

class Solution {
private:unordered_map<string, vector<string>> hash;vector<vector<string>> ans;
public:vector<vector<string>> groupAnagrams(vector<string>& strs) {for (const auto& str : strs){string tmp = str;sort(tmp.begin(), tmp.end());hash[tmp].emplace_back(str);}for (const auto& one: hash){ans.emplace_back(one.second);}return ans;}
};

时间复杂度 : O ( n k log ⁡ k ) :O(nk\log k) :O(nklogk),其中 n n n s t r s strs strs 中的字符串的数量, k k k s t r s strs strs 中的字符串的的最大长度。需要遍历 n n n 个字符串,对于每个字符串,需要 O ( k log ⁡ k ) O(k\log k) O(klogk) 的时间进行排序以及 O ( 1 ) O(1) O(1) 的时间更新哈希表,因此总时间复杂度是 O ( n k log ⁡ k ) O(nk\log k) O(nklogk)

空间复杂度: O ( n k ) O(nk) O(nk),其中 n n n s t r s strs strs 中的字符串的数量, k k k s t r s strs strs 中的字符串的的最大长
度。需要用哈希表存储全部字符串。


方法二:计数
由于互为字母异位词的两个字符串包含的字母相同,因此两个字符串中的相同字母出现的次数一定是相同的,故可以将每个字母出现的次数使用字符串表示,作为哈希表的键。

由于字符串只包含小写字母,因此对于每个字符串,可以使用长度为 26 的数组记录每个字母出现的次数。、

还是python写比较方便,C++太不熟悉了TAT

class Solution(object):def groupAnagrams(self, strs):""":type strs: List[str]:rtype: List[List[str]]"""mp = collections.defaultdict(list);for st in strs:# 记录字母出现的次数counts = [0] * 26for ch in st:# 字母出现记录+1# ord() 函数返回一个字符的Unicode码点,因此 ord(ch) 返回字符 ch 的Unicode码点counts[ord(ch) - ord("a")] += 1# 两个字符串中的相同字母出现的次数一定是相同的,放在一起mp[tuple(counts)].append(st)return list(mp.values())

时间复杂度 : O ( n ( k + ∣ Σ ∣ ) ) :O(n(k+|\Sigma|)) :O(n(k+∣Σ∣)),其中 n n n s t r s strs strs 中的字符串的数量, k k k s t r s strs strs 中的字符串的的最大长度,Σ 是字符集,在本题中字符集为所有小写字母, ∣ Σ ∣ = 26 |\Sigma|=26 ∣Σ∣=26。需要遍历 n n n 个字符串,对于每个字符串,需要 O ( k ) O(k) O(k) 的时间计算每个字母出现的次数, O ( ∣ Σ ∣ ) O(|\Sigma|) O(∣Σ∣) 的时间生成哈希表的键, 以及 O ( 1 ) O(1) O(1) 的时间更新哈希表,
因此总时间复杂度是 O ( n ( k + ∣ Σ ∣ ) ) O(n(k+|\Sigma|)) O(n(k+∣Σ∣))

空间复杂度: O ( n ( k + ∣ Σ ∣ ) ) O(n(k+|\Sigma|)) O(n(k+∣Σ∣)),其中 n n n s t r s strs strs 中的字符串的数量, k k k s t r s strs strs 中的字符串的最大
长度,Σ 是字符集,在本题中字符集为所有小写字母, ∣ Σ ∣ = 26 |\Sigma|=26 ∣Σ∣=26。需要用哈希表存储全部字符串,而记录每个字符串中每个字母出现次数的数组需要的空间为 O ( ∣ Σ ∣ ) O(|\Sigma|) O(∣Σ∣), 在渐进意义下小于 O ( n ( k + ∣ Σ ∣ ) ) O(n(k+|\Sigma|)) O(n(k+∣Σ∣)),忽略不计。

128.最长连续序列

在这里插入图片描述
https://leetcode.cn/problems/longest-consecutive-sequence/description/?envType=study-plan-v2&envId=top-100-liked

我们考虑枚举数组中的每个数 x x x,考虑以其为起点,不断尝试匹配 x + 1 , x + 2 , ⋯ x+1,x+2,\cdots x+1,x+2,是否存在,假设最长匹配到了 x + y x+y x+y,那么以 x x x 为起点的最长连续序列即为 x , x + 1 , x + 2 , ⋯ , x + y x,x+1,x+2,\cdots,x+y x,x+1,x+2,,x+y, 其长度为
y + 1 y+1 y+1, 我们不断枚举并更新答案即可。

对于匹配的过程,暴力的方法是 O ( n ) O(n) O(n) 遍历数组去看是否存在这个数,但其实更高效的方法是用一
个哈希表存储数组中的数,这样查看一个数是否存在即能优化至 O ( 1 ) O(1) O(1) 的时间复杂度。

仅仅是这样我们的算法时间复杂度最坏情况下还是会达到 O ( n 2 ) O(n^2) O(n2)
即外层需要枚举 O ( n ) O(n) O(n) 个数,内层需要暴力匹配 O ( n ) O(n) O(n) 次), 无法满足题目的要求。

但仔细分析这个过程,我们会发现其中执行了很多不必要的枚举,如果已知有一个 x , x + 1 , x + 2 , ⋯ , x + y x,x+1,x+2,\cdots,x+y x,x+1,x+2,,x+y 的连续序列,而我们却重新从 x + 1 x+1 x+1 , x + 2 x+2 x+2 或者是 x + y x+y x+y 处开始尝试匹配,那么得到的结果肯定不会优于枚举 x x x 为起点的答案,因此我们在外层循环的时候碰到这种情况跳过即可。

那么怎么判断是否跳过呢? 由于我们要枚举的数 x x x一定是在数组中不存在前驱数 x − 1 x- 1 x1的,不然按
照上面的分析我们会从 x − 1 x-1 x1 开始尝试匹配,因此我们每次在哈希表中检查是否存在 x − 1 x-1 x1 即能判断是否需要跳过了。

class Solution(object):def longestConsecutive(self, nums):""":type nums: List[int]:rtype: int"""longest_streak = 0num_set = set(nums)for num in num_set:if num - 1 not in num_set:current_num = numcurrent_streak = 1while current_num + 1 in num_set:current_num += 1current_streak += 1longest_streak = max(longest_streak, current_streak)return longest_streak    

时间复杂度: O ( n ) O(n) O(n),其中 n n n 为数组的长度。具体分析已在上面正文中给出。
空间复杂度: O ( n ) O(n) O(n)。哈希表存储数组中所有的数需要 O ( n ) O(n) O(n) 的空间。

在 Python 中,使用 in 操作符来判断元素是否存在于 set 中,其平均时间复杂度是 O(1)。这是因为 set 是基于哈希表实现的,在大多数情况下,通过哈希函数将元素映射到哈希表的特定位置,可以在常数时间内进行查找操作。当然,如果出现哈希冲突,时间复杂度可以增高到 O(n)。但是在平均情况下,查询元素是否在 set 中仍然是效率很高的操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/219063.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HiveSql语法优化三 :join优化

前面提到过&#xff1a;Hive拥有多种join算法&#xff0c;包括Common Join&#xff0c;Map Join&#xff0c;Bucket Map Join&#xff0c;Sort Merge Buckt Map Join等&#xff1b;每种join算法都有对应的优化方案。 Map Join 在优化阶段&#xff0c;如果能将Common Join优化为…

【docker 】基于Dockerfile创建镜像

Dockerfile文档 Dockerfile文档地址 Dockerfile 是一个用来构建镜像的文本文件&#xff0c;文本内容包含了一条条构建镜像所需的指令和说明。 DockerFile 可以说是一种可以被 Docker 程序解释的脚本&#xff0c;DockerFile 是由一条条的命令组成的&#xff0c;每条命令对应 …

RT-DETR优化:ASF-YOLO提取多尺度特征 | 2023年12月最新成果

🚀🚀🚀本文改进: ASF-YOLO一种新的特征融合网络架构,该网络由两个主要的组件网络组成,可以为小目标分割提供互补的信息:(1)SSFF模块,它结合了来自u;(2)TFE模块,它可以捕获小目标的局部精细细节等 🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK 学姐带你学…

AUTOSAR组织引入了Rust语言的原因是什么?有哪些好处?与C++相比它有什么优点?并推荐一些入门学习Rust语言链接等

AUTOSAR(汽车开放系统架构)是一个由汽车制造商、供应商和其他来自电子、半导体和软件行业的公司组成的全球发展伙伴关系,自2003年以来一直致力于为汽车行业开发和引入开放、标准化的软件平台。 AUTOSAR 最近宣布成立一个新的工作组,用于探索在汽车软件中使用 Rust 编程语言…

R语言|分面中嵌入趋势线

简介 关于分面的推文&#xff0c;小编根据实际科研需求&#xff0c;已经分享了很多技巧。例如&#xff1a; 分面中添加不同表格 分面中添加不同的直线 基于分面的面积图绘制 分面中的细节调整汇总 基于分面的折线图绘制 最近科研中又遇到了与分面相关的需求&#xff1a;…

Axure 9基本元件,表单及表格元件简介,表单案例

目录 一.基本元件 1.元件基本介绍 2.基本元件的使用 二.表单及表格元件 三.表单案例 四.简单简历绘制 一.基本元件 1.元件基本介绍 概述 - 在Axure RP中&#xff0c;元件是**构建原型图的基础模块**。 将元件从元件库里拖拽到画布中&#xff0c;即可添加元件到你的原型…

excel可视化看板【动态关联公司、部门、人员、及时间】

昨天网友花钱定制了一个可视化报表&#xff0c;花了一整天时间&#xff0c;做了这份酷炫的可视化报表&#xff0c;右边按钮控件可以动态关联可视化图表 做这种这重要是数据的统计&#xff0c;只要能统计到&#xff0c;剩下的只是如何展示&#xff0c;慢慢的调整&#xff0c;美…

一、微前端目标、前端架构的前生今世、微前端架构优势和劣势、软件设计原则与分层

1、目标 2、前端架构的前世今生 ① 初始&#xff1a;无架构&#xff0c;前端代码内嵌到后端应用中 ② 后端 MVC 架构&#xff1a;将视图层、数据层、控制层做分离 缺点&#xff1a;重度依赖开发环境&#xff0c;代码混淆严重&#xff08;在调试时&#xff0c;需要启动后端所有…

加油站“变身”快充站,探讨充电新模式——安科瑞 顾烊宇

摘要&#xff1a;新能源汽车规模化发展的同时&#xff0c;充电不便利的痛点愈发明显。在未来的新能源汽车行业发展当中&#xff0c;充电的矛盾要远远大于造车的矛盾&#xff0c;解决好充电的问题成为电动汽车行业发展的一个突出问题。解决充电补能问题&#xff0c;重要的方式之…

【golang/g3n】3D游戏引擎G3N的windows安装与测试

目录 说在前面安装测试 说在前面 操作系统&#xff1a;win 11go version&#xff1a;go1.21.5 windows/amd64g3n版本&#xff1a;github.com/g3n/engine v0.2.0其他&#xff1a;找了下golang 3d相关的库&#xff0c;目前好像就这个比较活跃 安装 按照官方教程所说&#xff0c;…

linux空洞文件以及多线程写入

介绍空洞文件 Linux空洞文件&#xff08;hole file&#xff09;是一种特殊类型的文件&#xff0c;其大小可能超过实际存储的数据量。在空洞文件中&#xff0c;文件系统会为文件分配磁盘空间&#xff0c;但实际上只在文件中存储了部分数据&#xff0c;其余部分被称为"空洞…

Redis实现延迟队列

目录 一、什么是延时队列 二、延时队列的应用 三、举例说明 我的设计思想: 一、什么是延时队列 延时队列相比于普通队列最大的区别就体现在其延时的属性上&#xff0c;普通队列的元素是先进先出&#xff0c;按入队顺序进行处理&#xff0c;而延时队列中的元素在入队时会指定…

SQL、Jdbc、JdbcTemplate、Mybatics

数据库&#xff1a;查询&#xff08;show、select&#xff09;、创建&#xff08;create)、使用(use)、删除(drop)数据库 表&#xff1a;创建&#xff08;【字段】约束、数据类型&#xff09;、查询、修改&#xff08;alter *add&#xff09;、删除 DML&#xff1a;增加(inse…

2024年网络安全比赛--系统渗透测试(超详细)

一、竞赛时间 180分钟 共计3小时 二、竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 1.在渗透机中对服务器主机进行信息收集&#xff0c;将服务器开启的端口号作为 Flag 值提交; 2.在渗透机中对服务器主机进行渗透&#xff0c;在服务器主机中获取服务器主机名称&#xff…

【自动化测试】web3py 连接 goerli

web3py 连接 goerli 直接使用库里方法 if __name__ __main__:from web3.auto.infura.goerli import w3w3.eth.get_balance(get_address_by_private_key(os.getenv("AAA_KEY")))error info: websockets.exceptions.InvalidStatusCode: server rejected WebSocket …

【算法刷题】每日打卡——动态规划(1)

背包问题 例题一 有 N件物品和一个容量是 V 的背包。每件物品只能使用一次。 第 i件物品的体积是 vi&#xff0c;价值是 wi。 求解将哪些物品装入背包&#xff0c;可使这些物品的总体积不超过背包容量&#xff0c;且总价值最大。 输出最大价值。 输入格式 第一行两个整数…

Threejs利用着色器编写动态飞线特效

一、导语 动态飞线特效是可视化数据地图中常见的需求之一&#xff0c;鼠标点击的区块作为终点&#xff0c;从其他区块飞线至点击区块&#xff0c;附带颜色变换或者结合粒子动画 二、分析 利用创建3点来构成贝塞尔曲线&#xff0c;形成线段利用着色器材质来按照线段以及时间…

NAS搭建WebDAV服务同步Zotero科研文献

文章目录 一、Zotero安装教程二、群晖NAS WebDAV设置三、Zotero设置四、使用公网地址同步Zotero文献库五、使用永久固定公网地址同步Zotero文献库 Zotero 是一款全能型 文献管理器,可以 存储、管理和引用文献&#xff0c;不但免费&#xff0c;功能还很强大实用。 ​ Zotero 支…

visual studio code 好用的插件

vscode-icons Better comments 该插件对不同类型的注释会附加了不同的颜色&#xff0c;更加方便区分&#xff0c;帮助我们在代码中创建更人性化的注释。 Error Lens Error Lens插件是一款可以检测你编写的代码的语法错误&#xff0c;并且会显示出对语法错误的诊断信息…

Mac搭建Frida逆向开发环境

一、简介 Frida是一种基于Python+JavaScript的动态分析工具,可以用于逆向开发、应用程序的安全测试、反欺诈技术等领域,本质是一种动态插桩技术。Frida主要用于在已安装的应用程序上运行自己的JavaScript代码,从而进行动态分析、调试、修改等操作,能够绕过应用程序的安全措…