用C#实现简单的线性回归

前言

最近注意到了NumSharp,想学习一下,最好的学习方式就是去实践,因此从github上找了一个用python实现的简单线性回归代码,然后基于NumSharp用C#进行了改写。

NumSharp简介

NumSharp(NumPy for C#)是一个在C#中实现的多维数组操作库,它的设计受到了Python中的NumPy库的启发。NumSharp提供了类似于NumPy的数组对象,以及对这些数组进行操作的丰富功能。它是一个开源项目,旨在为C#开发者提供在科学计算、数据分析和机器学习等领域进行高效数组处理的工具。

image-20240111192453320

python代码

用到的python代码来源:llSourcell/linear_regression_live: This is the code for the “How to Do Linear Regression the Right Way” live session by Siraj Raval on Youtube (github.com)

image-20240111192805545

下载到本地之后,如下图所示:

image-20240111193007829

python代码如下所示:

#The optimal values of m and b can be actually calculated with way less effort than doing a linear regression. 
#this is just to demonstrate gradient descentfrom numpy import *# y = mx + b
# m is slope, b is y-intercept
def compute_error_for_line_given_points(b, m, points):totalError = 0for i in range(0, len(points)):x = points[i, 0]y = points[i, 1]totalError += (y - (m * x + b)) ** 2return totalError / float(len(points))def step_gradient(b_current, m_current, points, learningRate):b_gradient = 0m_gradient = 0N = float(len(points))for i in range(0, len(points)):x = points[i, 0]y = points[i, 1]b_gradient += -(2/N) * (y - ((m_current * x) + b_current))m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))new_b = b_current - (learningRate * b_gradient)new_m = m_current - (learningRate * m_gradient)return [new_b, new_m]def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):b = starting_bm = starting_mfor i in range(num_iterations):b, m = step_gradient(b, m, array(points), learning_rate)return [b, m]def run():points = genfromtxt("data.csv", delimiter=",")learning_rate = 0.0001initial_b = 0 # initial y-intercept guessinitial_m = 0 # initial slope guessnum_iterations = 1000print ("Starting gradient descent at b = {0}, m = {1}, error = {2}".format(initial_b, initial_m, compute_error_for_line_given_points(initial_b, initial_m, points)))print ("Running...")[b, m] = gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations)print ("After {0} iterations b = {1}, m = {2}, error = {3}".format(num_iterations, b, m, compute_error_for_line_given_points(b, m, points)))if __name__ == '__main__':run()

用C#进行改写

首先创建一个C#控制台应用,添加NumSharp包:

image-20240111193711408

现在我们开始一步步用C#进行改写。

python代码:

points = genfromtxt("data.csv", delimiter=",")

在NumSharp中没有genfromtxt方法需要自己写一个。

C#代码:

 //创建double类型的列表List<double> Array = new List<double>();// 指定CSV文件的路径string filePath = "你的data.csv路径";// 调用ReadCsv方法读取CSV文件数据Array = ReadCsv(filePath);var array = np.array(Array).reshape(100,2);static List<double> ReadCsv(string filePath)
{List<double> array = new List<double>();try{// 使用File.ReadAllLines读取CSV文件的所有行string[] lines = File.ReadAllLines(filePath);             // 遍历每一行数据foreach (string line in lines){// 使用逗号分隔符拆分每一行的数据string[] values = line.Split(',');// 打印每一行的数据foreach (string value in values){array.Add(Convert.ToDouble(value));}                  }}catch (Exception ex){Console.WriteLine("发生错误: " + ex.Message);}return array;
}

python代码:

def compute_error_for_line_given_points(b, m, points):totalError = 0for i in range(0, len(points)):x = points[i, 0]y = points[i, 1]totalError += (y - (m * x + b)) ** 2return totalError / float(len(points))

这是在计算均方误差:

image-20240111194422538

C#代码:

 public static double compute_error_for_line_given_points(double b,double m,NDArray array){double totalError = 0;for(int i = 0;i < array.shape[0];i++){double x = array[i, 0];double y = array[i, 1];totalError += Math.Pow((y - (m*x+b)),2);}return totalError / array.shape[0];}

python代码:

def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):b = starting_bm = starting_mfor i in range(num_iterations):b, m = step_gradient(b, m, array(points), learning_rate)return [b, m]
def step_gradient(b_current, m_current, points, learningRate):b_gradient = 0m_gradient = 0N = float(len(points))for i in range(0, len(points)):x = points[i, 0]y = points[i, 1]b_gradient += -(2/N) * (y - ((m_current * x) + b_current))m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))new_b = b_current - (learningRate * b_gradient)new_m = m_current - (learningRate * m_gradient)return [new_b, new_m]

这是在用梯度下降来迭代更新y = mx + b中参数b、m的值。

因为在本例中,误差的大小是通过均方差来体现的,所以均方差就是成本函数(cost function)或者叫损失函数(loss function),我们想要找到一组b、m的值,让误差最小。

成本函数如下:

image-20240111200019806

对θ1求偏导,θ1就相当于y = mx + b中的b:

image-20240111200224676

再对θ2求偏导,θ2就相当于y = mx + b中的m:

image-20240111200403338

使用梯度下降:

image-20240111200728327

θ1与θ2的表示:

image-20240111200839991

α是学习率,首先θ1、θ2先随机设一个值,刚开始梯度变化很大,后面慢慢趋于0,当梯度等于0时,θ1与θ2的值就不会改变了,或者达到我们设置的迭代次数了,就不再继续迭代了。关于原理这方面的解释,可以查看这个链接(Linear Regression in Machine learning - GeeksforGeeks),本文中使用的图片也来自这里。

总之上面的python代码在用梯度下降迭代来找最合适的参数,现在用C#进行改写:

 public static double[] gradient_descent_runner(NDArray array, double starting_b, double starting_m, double learningRate,double num_iterations){double[] args = new double[2];args[0] = starting_b;args[1] = starting_m;for(int i = 0 ; i < num_iterations; i++) {args = step_gradient(args[0], args[1], array, learningRate);}return args;}
 public static double[] step_gradient(double b_current,double m_current,NDArray array,double learningRate){double[] args = new double[2];double b_gradient = 0;double m_gradient = 0;double N = array.shape[0];for (int i = 0; i < array.shape[0]; i++){double x = array[i, 0];double y = array[i, 1];b_gradient += -(2 / N) * (y - ((m_current * x) + b_current));m_gradient += -(2 / N) * x * (y - ((m_current * x) + b_current));}double new_b = b_current - (learningRate * b_gradient);double new_m = m_current - (learningRate * m_gradient);args[0] = new_b;args[1] = new_m;return args;}

用C#改写的全部代码:

using NumSharp;namespace LinearRegressionDemo
{internal class Program{    static void Main(string[] args){   //创建double类型的列表List<double> Array = new List<double>();// 指定CSV文件的路径string filePath = "你的data.csv路径";// 调用ReadCsv方法读取CSV文件数据Array = ReadCsv(filePath);var array = np.array(Array).reshape(100,2);double learning_rate = 0.0001;double initial_b = 0;double initial_m = 0;double num_iterations = 1000;Console.WriteLine($"Starting gradient descent at b = {initial_b}, m = {initial_m}, error = {compute_error_for_line_given_points(initial_b, initial_m, array)}");Console.WriteLine("Running...");double[] Args =gradient_descent_runner(array, initial_b, initial_m, learning_rate, num_iterations);Console.WriteLine($"After {num_iterations} iterations b = {Args[0]}, m = {Args[1]}, error = {compute_error_for_line_given_points(Args[0], Args[1], array)}");Console.ReadLine();}static List<double> ReadCsv(string filePath){List<double> array = new List<double>();try{// 使用File.ReadAllLines读取CSV文件的所有行string[] lines = File.ReadAllLines(filePath);             // 遍历每一行数据foreach (string line in lines){// 使用逗号分隔符拆分每一行的数据string[] values = line.Split(',');// 打印每一行的数据foreach (string value in values){array.Add(Convert.ToDouble(value));}                  }}catch (Exception ex){Console.WriteLine("发生错误: " + ex.Message);}return array;}public static double compute_error_for_line_given_points(double b,double m,NDArray array){double totalError = 0;for(int i = 0;i < array.shape[0];i++){double x = array[i, 0];double y = array[i, 1];totalError += Math.Pow((y - (m*x+b)),2);}return totalError / array.shape[0];}public static double[] step_gradient(double b_current,double m_current,NDArray array,double learningRate){double[] args = new double[2];double b_gradient = 0;double m_gradient = 0;double N = array.shape[0];for (int i = 0; i < array.shape[0]; i++){double x = array[i, 0];double y = array[i, 1];b_gradient += -(2 / N) * (y - ((m_current * x) + b_current));m_gradient += -(2 / N) * x * (y - ((m_current * x) + b_current));}double new_b = b_current - (learningRate * b_gradient);double new_m = m_current - (learningRate * m_gradient);args[0] = new_b;args[1] = new_m;return args;}public static double[] gradient_descent_runner(NDArray array, double starting_b, double starting_m, double learningRate,double num_iterations){double[] args = new double[2];args[0] = starting_b;args[1] = starting_m;for(int i = 0 ; i < num_iterations; i++) {args = step_gradient(args[0], args[1], array, learningRate);}return args;}}
}

python代码的运行结果:

image-20240111201856163

C#代码的运行结果:

image-20240111202002755

结果相同,说明改写成功。

总结

本文基于NumSharp用C#改写了一个用python实现的简单线性回归,通过这次实践,可以加深对线性回归原理的理解,也可以练习使用NumSharp。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/237217.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[redis] redis主从复制,哨兵模式和集群

一、redis的高可用 1.1 redis高可用的概念 在web服务器中&#xff0c;高可用是指服务器可以正常访问的时间&#xff0c;衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。 高可用的计算公式是1-&#xff08;宕机时间&#xff09;/&#xff08;宕机时…

leetcode17 电话号码的字母组合

方法1 if-else方法 if-else方法的思路及其简单粗暴&#xff0c;如下图所示&#xff0c;以数字234为例&#xff0c;数字2所对应的字母是abc&#xff0c;数字3所对应的是def&#xff0c;数字4所对应的是ghi&#xff0c;最后所产生的结果就类似于我们中学所学过的树状图一样&…

opencv-4.8.0编译及使用

1 编译 opencv的编译总体来说比较简单&#xff0c;但必须记住一点&#xff1a;opencv的版本必须和opencv_contrib的版本保持一致。例如opencv使用4.8.0&#xff0c;opencv_contrib也必须使用4.8.0。 进入opencv和opencv_contrib的github页面后&#xff0c;默认看到的是git分支&…

浅析三种Anaconda虚拟环境创建方式和第三方包的安装

目录 引言 一、Anaconda虚拟环境创建方式 1. 使用conda命令创建虚拟环境 2. 使用conda-forge创建虚拟环境 3. 使用Miniconda创建虚拟环境 二、第三方包的安装和管理 1. 使用 pip 安装包&#xff1a; 2. 使用 conda 安装包&#xff1a; 三、结论与建议 引言 在当今的数…

【现代密码学】笔记3.1-3.3 --规约证明、伪随机性《introduction to modern cryphtography》

【现代密码学】笔记3.1-3.3 --规约证明、伪随机性《introduction to modern cryphtography》 写在最前面私钥加密与伪随机性 第一部分密码学的计算方法论计算安全加密的定义&#xff1a;对称加密算法 伪随机性伪随机生成器&#xff08;PRG&#xff09; 规约法规约证明 构造安全…

Nacos和Eureka比较、统一配置管理、Nacos热更新、多环境配置共享、Nacos集群搭建步骤

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、Nacos和eureka的对比二、统一配置管理二、Nacos热更新方式一方式二 三、多环境配置共享四、Nacos集群搭建步骤&#xff08;黑马springCloud的p29&#xff0…

深度学习笔记(五)——网络优化(1):学习率自调整、激活函数、损失函数、正则化

文中程序以Tensorflow-2.6.0为例 部分概念包含笔者个人理解&#xff0c;如有遗漏或错误&#xff0c;欢迎评论或私信指正。 截图和程序部分引用自北京大学机器学习公开课 通过学习已经掌握了主要的基础函数之后具备了搭建一个网络并使其正常运行的能力&#xff0c;那下一步我们还…

JavaScript基础(26)_dom增删改练习

<!DOCTYPE html> <html lang"zh"><head><meta charset"UTF-8"><title>DOM增删改练习</title><link rel"stylesheet" href"../browser_default_style/reset.css"><style>table {borde…

vue路由及参数router

目录 vue项目版本1、创建一个vue项目步骤 &#xff08;windows环境下&#xff09;。创建vue项目前&#xff0c;检查系统是否具备创建项目的条件&#xff08;是否已经安装好了node.js、webpack、vue-cli&#xff09;。cmd打开终端。2、vue路由vue-router解说2.1 路由视图<rou…

【GDAL】Windows下VS+GDAL开发环境搭建

Step.0 环境说明&#xff08;vs版本&#xff0c;CMake版本&#xff09; 本地的IDE环境是vs2022&#xff0c;安装的CMake版本是3.25.1。 Step.1 下载GDAL和依赖的组件 编译gdal之前需要安装gdal依赖的组件&#xff0c;gdal所依赖的组件可以在官网文档找到&#xff0c;可以根据…

Kafka(七)可靠性

目录 1 可靠的数据传递1.1 Kafka的可靠性保证1.2 复制1.3 Broker配置1.3.1 复制系数1.3.2 broker的位置分布1.3.3 不彻底的首领选举1.3.4 最少同步副本1.3.5 保持副本同步1.3.6 持久化到磁盘flush.messages9223372036854775807flush.ms9223372036854775807 1.2 在可靠的系统中使…

Netty开篇——基础介绍与准备(一)

I/O篇 Netty的介绍 Netty 是由JBOSS提供的一个Java开源框架在Github上Netty 是一个异步的、基于事件驱动的网络应用框架&#xff0c;用以快速开发高性能、高可靠性的网络IO程序。Netty 主要针对在TCP协议下面向客户端的高并发应用&#xff0c;或者Peer-to-Peer/P2P场景下的大量…

day17 平衡二叉树 二叉树的所有路径 左叶子之和

题目1&#xff1a;110 平衡二叉树 题目链接&#xff1a;110 平衡二叉树 题意 判断二叉树是否为平衡二叉树&#xff08;每个节点的左右两个子树的高度差绝对值不超过1&#xff09; 递归遍历 递归三部曲 1&#xff09;确定递归函数的参数和返回值 2&#xff09;确定终止条…

数据结构链表完整实现(负完整代码)

文章目录 前言引入1、链表定义及结构链表的分类3、单向不带头链表实现实现完整代码 4、带头双向循环链表实现实现完整代码 前言 引入 在上一篇文章中&#xff0c;我们认识了顺序表&#xff0c;但是在许多情况中&#xff0c;顺序表在处理一些事件时还存在许多问题&#xff0c;比…

鸿鹄电子招投标系统:企业战略布局下的采购寻源解决方案

在数字化采购领域&#xff0c;企业需要一个高效、透明和规范的管理系统。通过采用Spring Cloud、Spring Boot2、Mybatis等先进技术&#xff0c;我们打造了全过程数字化采购管理平台。该平台具备内外协同的能力&#xff0c;通过待办消息、招标公告、中标公告和信息发布等功能模块…

数据分析——快递电商

一、任务目标 1、任务 总体目的——对账 本项目解决同时使用多个快递发货&#xff0c;部分隔离区域出现不同程度涨价等情形下&#xff0c;如何快速准确核对账单的问题。 1、在订单表中新增一列【运费差异核对】来表示订单运费实际有多少差异&#xff0c;结果为数值。 2、将…

【无标题】关于异常处理容易犯的错

一般项目是方法打上 try…catch…捕获所有异常记录日志&#xff0c;有些会使用 AOP 来进行类似的“统一异常处理”。 其实&#xff0c;这种处理异常的方式非常不可取。那么今天&#xff0c;我就和你分享下不可取的原因、与异常处理相关的坑和最佳实践。 捕获和处理异常容易犯…

Feature Fusion for Online Mutual KD

paper&#xff1a;Feature Fusion for Online Mutual Knowledge Distillation official implementation&#xff1a;https://github.com/Jangho-Kim/FFL-pytorch 本文的创新点 本文提出了一个名为特征融合学习&#xff08;Feature Fusion Learning, FFL&#xff09;的框架&…

行走在深度学习的幻觉中:问题缘由与解决方案

如何解决大模型的「幻觉」问题&#xff1f; 我们在使用深度学习大模型如LLM&#xff08;Large Language Models&#xff09;时&#xff0c;可能会遇到一种被称为“幻觉”的现象。没错&#xff0c;它并不是人脑中的错觉&#xff0c;而是模型对特定模式的过度依赖&#xff0c;这…

Linux---gcc编译

目录 前言 一、gcc编译 二、程序的编译过程 三、gcc查看编译过程 1.预处理阶段 2.编译 3.汇编 4.链接 动静态库链接的内容 动静态库链接的优缺点 5.总结记忆 前言 在前面我们学会使用vim对文件进行编辑&#xff0c;如果是C或者C程序&#xff0c;我们编辑好了内容…