TDengine 签约西电电力

近年来,随着云计算和物联网技术的迅猛发展,传统电力行业正朝着数字化、信息化和智能化的大趋势迈进。在传统业务基础上,电力行业构建了信息网络、通信网络和能源网络,致力于实现发电、输电、变电、配电和用电的实时智能联动。在这个过程中,电力物联网领域产生的数据采集量呈现爆炸式增长,应对海量数据处理需求成为推动行业改革的重要任务。

TDengine 签约西电电力 - TDengine Database 时序数据库

近日,TDengine 与西电电力达成签约合作,助力其智慧能源系统的优化发展。TDengine 将为西电电力提供高效、可靠的数据处理解决方案,支持系统对设备进行高效管理和监控分析。通过进一步提升设备时序数据写入、存储和查询性能,确保系统的高效稳定运行。这一合作将为智慧能源行业的发展注入新的动力。

TDengine 在电力场景下有着非常广泛的应用,均取得了显著的改造效果。中节能风力发电股份有限公司先前采用 TDengine 构建了中节能风电运维平台,结果显示数据存储方面的优势明显——整体压缩比提升了 7-8 倍,而数据查询的响应时间也仅需秒级。

除此之外,在上海电气的“SmartOPS 储能智慧运维系统”中,使用 InfluxDB 执行查询时需要等待十分钟以上才能得到结果,而使用相同的 SQL 语句,在 TDengine 中只需要 0.2 秒即可完成查询;在采集点数量相同的情况下,TDengine 压缩后的数据量仅为 InfluxDB 的 1/3。这些结果均突显出 TDengine 在电力数据存储和查询方面的显著优势。

关于西电电力

西安西电电力系统有限公司隶属于国务院国资委管理的中国西电集团,是我国主要的高压直流输电、柔性直流输电工程的系统研究、工程成套及换流阀设备研发、制造和试验检测基地。其以“推动绿色高效的电能转换、传输和应用”为使命,为社会各领域提供电能转换、电能质量改进、优化控制与节能降耗等方面的系统解决方案。公司致力于打造世界领先的电力电子技术研发和成果转化平台,同时也是领先的电力电子系统与设备服务商。

关于 TDengine

TDengine 核心是一款高性能、集群开源、云原生的时序数据库(Time Series Database,TSDB),专为物联网、工业互联网、电力、IT 运维等场景设计并优化,具有极强的弹性伸缩能力。同时它还带有内建的缓存、流式计算、数据订阅等系统功能,能大幅减少系统设计的复杂度,降低研发和运营成本,是一个高性能、分布式的物联网、工业大数据平台。当前 TDengine 主要提供两大版本,分别是支持私有化部署的 TDengine Enterprise 以及全托管的物联网、工业互联网云服务平台 TDengine Cloud,两者在开源时序数据库 TDengine OSS 的功能基础上有更多加强,用户可根据自身业务体量和需求进行版本选择。


了解更多 TDengine Database的具体细节,可在GitHub上查看相关源代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/237218.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用C#实现简单的线性回归

前言 最近注意到了NumSharp,想学习一下,最好的学习方式就是去实践,因此从github上找了一个用python实现的简单线性回归代码,然后基于NumSharp用C#进行了改写。 NumSharp简介 NumSharp(NumPy for C#)是一…

[redis] redis主从复制,哨兵模式和集群

一、redis的高可用 1.1 redis高可用的概念 在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。 高可用的计算公式是1-(宕机时间)/(宕机时…

leetcode17 电话号码的字母组合

方法1 if-else方法 if-else方法的思路及其简单粗暴,如下图所示,以数字234为例,数字2所对应的字母是abc,数字3所对应的是def,数字4所对应的是ghi,最后所产生的结果就类似于我们中学所学过的树状图一样&…

opencv-4.8.0编译及使用

1 编译 opencv的编译总体来说比较简单,但必须记住一点:opencv的版本必须和opencv_contrib的版本保持一致。例如opencv使用4.8.0,opencv_contrib也必须使用4.8.0。 进入opencv和opencv_contrib的github页面后,默认看到的是git分支&…

浅析三种Anaconda虚拟环境创建方式和第三方包的安装

目录 引言 一、Anaconda虚拟环境创建方式 1. 使用conda命令创建虚拟环境 2. 使用conda-forge创建虚拟环境 3. 使用Miniconda创建虚拟环境 二、第三方包的安装和管理 1. 使用 pip 安装包: 2. 使用 conda 安装包: 三、结论与建议 引言 在当今的数…

【现代密码学】笔记3.1-3.3 --规约证明、伪随机性《introduction to modern cryphtography》

【现代密码学】笔记3.1-3.3 --规约证明、伪随机性《introduction to modern cryphtography》 写在最前面私钥加密与伪随机性 第一部分密码学的计算方法论计算安全加密的定义:对称加密算法 伪随机性伪随机生成器(PRG) 规约法规约证明 构造安全…

Nacos和Eureka比较、统一配置管理、Nacos热更新、多环境配置共享、Nacos集群搭建步骤

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Nacos和eureka的对比二、统一配置管理二、Nacos热更新方式一方式二 三、多环境配置共享四、Nacos集群搭建步骤(黑马springCloud的p29&#xff0…

深度学习笔记(五)——网络优化(1):学习率自调整、激活函数、损失函数、正则化

文中程序以Tensorflow-2.6.0为例 部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。 截图和程序部分引用自北京大学机器学习公开课 通过学习已经掌握了主要的基础函数之后具备了搭建一个网络并使其正常运行的能力,那下一步我们还…

JavaScript基础(26)_dom增删改练习

<!DOCTYPE html> <html lang"zh"><head><meta charset"UTF-8"><title>DOM增删改练习</title><link rel"stylesheet" href"../browser_default_style/reset.css"><style>table {borde…

vue路由及参数router

目录 vue项目版本1、创建一个vue项目步骤 &#xff08;windows环境下&#xff09;。创建vue项目前&#xff0c;检查系统是否具备创建项目的条件&#xff08;是否已经安装好了node.js、webpack、vue-cli&#xff09;。cmd打开终端。2、vue路由vue-router解说2.1 路由视图<rou…

【GDAL】Windows下VS+GDAL开发环境搭建

Step.0 环境说明&#xff08;vs版本&#xff0c;CMake版本&#xff09; 本地的IDE环境是vs2022&#xff0c;安装的CMake版本是3.25.1。 Step.1 下载GDAL和依赖的组件 编译gdal之前需要安装gdal依赖的组件&#xff0c;gdal所依赖的组件可以在官网文档找到&#xff0c;可以根据…

Kafka(七)可靠性

目录 1 可靠的数据传递1.1 Kafka的可靠性保证1.2 复制1.3 Broker配置1.3.1 复制系数1.3.2 broker的位置分布1.3.3 不彻底的首领选举1.3.4 最少同步副本1.3.5 保持副本同步1.3.6 持久化到磁盘flush.messages9223372036854775807flush.ms9223372036854775807 1.2 在可靠的系统中使…

Netty开篇——基础介绍与准备(一)

I/O篇 Netty的介绍 Netty 是由JBOSS提供的一个Java开源框架在Github上Netty 是一个异步的、基于事件驱动的网络应用框架&#xff0c;用以快速开发高性能、高可靠性的网络IO程序。Netty 主要针对在TCP协议下面向客户端的高并发应用&#xff0c;或者Peer-to-Peer/P2P场景下的大量…

day17 平衡二叉树 二叉树的所有路径 左叶子之和

题目1&#xff1a;110 平衡二叉树 题目链接&#xff1a;110 平衡二叉树 题意 判断二叉树是否为平衡二叉树&#xff08;每个节点的左右两个子树的高度差绝对值不超过1&#xff09; 递归遍历 递归三部曲 1&#xff09;确定递归函数的参数和返回值 2&#xff09;确定终止条…

数据结构链表完整实现(负完整代码)

文章目录 前言引入1、链表定义及结构链表的分类3、单向不带头链表实现实现完整代码 4、带头双向循环链表实现实现完整代码 前言 引入 在上一篇文章中&#xff0c;我们认识了顺序表&#xff0c;但是在许多情况中&#xff0c;顺序表在处理一些事件时还存在许多问题&#xff0c;比…

鸿鹄电子招投标系统:企业战略布局下的采购寻源解决方案

在数字化采购领域&#xff0c;企业需要一个高效、透明和规范的管理系统。通过采用Spring Cloud、Spring Boot2、Mybatis等先进技术&#xff0c;我们打造了全过程数字化采购管理平台。该平台具备内外协同的能力&#xff0c;通过待办消息、招标公告、中标公告和信息发布等功能模块…

数据分析——快递电商

一、任务目标 1、任务 总体目的——对账 本项目解决同时使用多个快递发货&#xff0c;部分隔离区域出现不同程度涨价等情形下&#xff0c;如何快速准确核对账单的问题。 1、在订单表中新增一列【运费差异核对】来表示订单运费实际有多少差异&#xff0c;结果为数值。 2、将…

【无标题】关于异常处理容易犯的错

一般项目是方法打上 try…catch…捕获所有异常记录日志&#xff0c;有些会使用 AOP 来进行类似的“统一异常处理”。 其实&#xff0c;这种处理异常的方式非常不可取。那么今天&#xff0c;我就和你分享下不可取的原因、与异常处理相关的坑和最佳实践。 捕获和处理异常容易犯…

Feature Fusion for Online Mutual KD

paper&#xff1a;Feature Fusion for Online Mutual Knowledge Distillation official implementation&#xff1a;https://github.com/Jangho-Kim/FFL-pytorch 本文的创新点 本文提出了一个名为特征融合学习&#xff08;Feature Fusion Learning, FFL&#xff09;的框架&…

行走在深度学习的幻觉中:问题缘由与解决方案

如何解决大模型的「幻觉」问题&#xff1f; 我们在使用深度学习大模型如LLM&#xff08;Large Language Models&#xff09;时&#xff0c;可能会遇到一种被称为“幻觉”的现象。没错&#xff0c;它并不是人脑中的错觉&#xff0c;而是模型对特定模式的过度依赖&#xff0c;这…