【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻辑回归,决策树算法,集成学习,聚类算法。K-近邻算法的距离公式,应用LinearRegression或SGDRegressor实现回归预测,应用LogisticRegression实现逻辑回归预测,应用DecisionTreeClassifier实现决策树分类,应用RandomForestClassifie实现随机森林算法,应用Kmeans实现聚类任务。

全套笔记和代码自取移步gitee仓库: gitee仓库获取完整文档和代码

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


共 7 章,44 子模块

K-近邻算法

学习目标

  • 掌握K-近邻算法实现过程
  • 知道K-近邻算法的距离公式
  • 知道K-近邻算法的超参数K值以及取值问题
  • 知道kd树实现搜索的过程
  • 应用KNeighborsClassifier实现分类
  • 知道K-近邻算法的优缺点
  • 知道交叉验证实现过程
  • 知道超参数搜索过程
  • 应用GridSearchCV实现算法参数的调优

1.5 kd树

问题导入:

实现k近邻法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索。

这在特征空间的维数大及训练数据容量大时尤其必要。

k近邻法最简单的实现是线性扫描(穷举搜索),即要计算输入实例与每一个训练实例的距离。计算并存储好以后,再查找K近邻。当训练集很大时,计算非常耗时。

为了提高kNN搜索的效率,可以考虑使用特殊的结构存储训练数据,以减小计算距离的次数。


1 kd树简介

1.1 什么是kd树

根据KNN每次需要预测一个点时,我们都需要计算训练数据集里每个点到这个点的距离,然后选出距离最近的k个点进行投票。当数据集很大时,这个计算成本非常高,针对N个样本,D个特征的数据集,其算法复杂度为O(DN^2)

kd树:为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算。其基本原理是,如果A和B距离很远,B和C距离很近,那么A和C的距离也很远。有了这个信息,就可以在合适的时候跳过距离远的点。

这样优化后的算法复杂度可降低到O(DNlog(N))。感兴趣的读者可参阅论文:Bentley,J.L.,Communications of the ACM(1975)。

1989年,另外一种称为Ball Tree的算法,在kd Tree的基础上对性能进一步进行了优化。感兴趣的读者可以搜索Five balltree construction algorithms来了解详细的算法信息。

1.2 原理

image-20190213191654082

黄色的点作为根节点,上面的点归左子树,下面的点归右子树,接下来再不断地划分,分割的那条线叫做分割超平面(splitting hyperplane),在一维中是一个点,二维中是线,三维的是面。

image-20190213191739222

黄色节点就是Root节点,下一层是红色,再下一层是绿色,再下一层是蓝色。

image-20190219101722826

1.树的建立;

2.最近邻域搜索(Nearest-Neighbor Lookup)

kd树(K-dimension tree)是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。kd树是一种二叉树,表示对k维空间的一个划分,构造kd树相当于不断地用垂直于坐标轴的超平面将K维空间切分,构成一系列的K维超矩形区域。kd树的每个结点对应于一个k维超矩形区域。利用kd树可以省去对大部分数据点的搜索,从而减少搜索的计算量。

image-20190213223817957

类比“二分查找”:给出一组数据:[9 1 4 7 2 5 0 3 8],要查找8。如果挨个查找(线性扫描),那么将会把数据集都遍历一遍。而如果排一下序那数据集就变成了:[0 1 2 3 4 5 6 7 8 9],按前一种方式我们进行了很多没有必要的查找,现在如果我们以5为分界点,那么数据集就被划分为了左右两个“簇” [0 1 2 3 4]和[6 7 8 9]。

因此,根本就没有必要进入第一个簇,可以直接进入第二个簇进行查找。把二分查找中的数据点换成k维数据点,这样的划分就变成了用超平面对k维空间的划分。空间划分就是对数据点进行分类,“挨得近”的数据点就在一个空间里面。

2 构造方法

(1)构造根结点,使根结点对应于K维空间中包含所有实例点的超矩形区域;

(2)通过递归的方法,不断地对k维空间进行切分,生成子结点。在超矩形区域上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域(子结点);这时,实例被分到两个子区域。

(3)上述过程直到子区域内没有实例时终止(终止时的结点为叶结点)。在此过程中,将实例保存在相应的结点上。

(4)通常,循环的选择坐标轴对空间切分,选择训练实例点在坐标轴上的中位数为切分点,这样得到的kd树是平衡的(平衡二叉树:它是一棵空树,或其左子树和右子树的深度之差的绝对值不超过1,且它的左子树和右子树都是平衡二叉树)。

KD树中每个节点是一个向量,和二叉树按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:

(1)选择向量的哪一维进行划分;

(2)如何划分数据;

第一个问题简单的解决方法可以是随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分,这样问题2也得到了解决。

3 案例分析

3.1 树的建立

给定一个二维空间数据集:T={(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},构造一个平衡kd树。

image-20190219102142984

(1)思路引导:

根结点对应包含数据集T的矩形,选择x(1)轴,6个数据点的x(1)坐标中位数是6,这里选最接近的(7,2)点,以平面x(1)=7将空间分为左、右两个子矩形(子结点);接着左矩形以x(2)=4分为两个子矩形(左矩形中{(2,3),(5,4),(4,7)}点的x(2)坐标中位数正好为4),右矩形以x(2)=6分为两个子矩形,如此递归,最后得到如下图所示的特征空间划分和kd树。

image-20190219102409567

3.2 最近领域的搜索

假设标记为星星的点是 test point, 绿色的点是找到的近似点,在回溯过程中,需要用到一个队列,存储需要回溯的点,在判断其他子节点空间中是否有可能有距离查询点更近的数据点时,做法是以查询点为圆心,以当前的最近距离为半径画圆,这个圆称为候选超球(candidate hypersphere),如果圆与回溯点的轴相交,则需要将轴另一边的节点都放到回溯队列里面来。

image-20190213224152601

样本集{(2,3),(5,4), (9,6), (4,7), (8,1), (7,2)}

3.2.1 查找点(2.1,3.1)

image-20190213224414342

在(7,2)点测试到达(5,4),在(5,4)点测试到达(2,3),然后search_path中的结点为<(7,2),(5,4), (2,3)>,从search_path中取出(2,3)作为当前最佳结点nearest, dist为0.141;

然后回溯至(5,4),以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆,并不和超平面y=4相交,如上图,所以不必跳到结点(5,4)的右子空间去搜索,因为右子空间中不可能有更近样本点了。

于是再回溯至(7,2),同理,以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆并不和超平面x=7相交,所以也不用跳到结点(7,2)的右子空间去搜索。

至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2.1,3.1)的最近邻点,最近距离为0.141。

3.2.2 查找点(2,4.5)

image-20190219103050940

在(7,2)处测试到达(5,4),在(5,4)处测试到达(4,7)【优先选择在本域搜索】,然后search_path中的结点为<(7,2),(5,4), (4,7)>,从search_path中取出(4,7)作为当前最佳结点nearest, dist为3.202;

然后回溯至(5,4),以(2,4.5)为圆心,以dist=3.202为半径画一个圆与超平面y=4相交,所以需要跳到(5,4)的左子空间去搜索。所以要将(2,3)加入到search_path中,现在search_path中的结点为<(7,2),(2, 3)>;另外,(5,4)与(2,4.5)的距离为3.04 < dist = 3.202,所以将(5,4)赋给nearest,并且dist=3.04。

回溯至(2,3),(2,3)是叶子节点,直接平判断(2,3)是否离(2,4.5)更近,计算得到距离为1.5,所以nearest更新为(2,3),dist更新为(1.5)

回溯至(7,2),同理,以(2,4.5)为圆心,以dist=1.5为半径画一个圆并不和超平面x=7相交, 所以不用跳到结点(7,2)的右子空间去搜索。

至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2,4.5)的最近邻点,最近距离为1.5。

4 总结

首先通过二叉树搜索(比较待查询节点和分裂节点的分裂维的值,小于等于就进入左子树分支,大于就进入右子树分支直到叶子结点),顺着“搜索路径”很快能找到最近邻的近似点,也就是与待查询点处于同一个子空间的叶子结点;

然后再回溯搜索路径,并判断搜索路径上的结点的其他子结点空间中是否可能有距离查询点更近的数据点,如果有可能,则需要跳到其他子结点空间中去搜索(将其他子结点加入到搜索路径)。

重复这个过程直到搜索路径为空。

未完待续, 同学们请等待下一期

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/259012.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习3----决策树

这是前期准备 import numpy as np import pandas as pd import matplotlib.pyplot as plt #ID3算法 #每个特征的信息熵 # target : 账号是否真实&#xff0c;共2种情况 # yes 7个 p0.7 # no 3个 p0.3 info_D-(0.7*np.log2(0.7)0.3*np.log2(0.3)) info_D #日志密度…

Positive SSL 证书介绍

Positive SSL 是一种受欢迎的 SSL 证书&#xff0c;提供了卓越的安全性、性价比和品牌信任。以下是对 Positive SSL 在这些方面的简要介绍&#xff1a; 1. 安全性&#xff1a; Positive SSL 证书采用强大的加密技术&#xff0c;确保网站和用户之间的数据传输是安全的。它使用…

普法GraphicBuffer诞生以及跨进程传递

GraphicBuffer诞生以及跨进程传递重认识 引言 对于Android的Graphics图形堆栈这块&#xff0c;自我感觉看了蛮多的博客啊文档(不管是比较老的还是新一点的)。但是仅仅只是看了而已&#xff0c;都是蜻蜓点水&#xff0c;没有进行记录也没有总结。所以每次哪怕阅读过程中产业了很…

【PCB】Allegro PCB 的模块复用操作

【PCB】Allegro PCB 的模块复用操作

(01)Hive的相关概念——架构、数据存储、读写文件机制

目录 一、架构及组件介绍 1.1 Hive整体架构 1.2 Hive组件 1.3 Hive数据模型&#xff08;Data Model&#xff09; 1.3.1 Databases 1.3.2 Tables 1.3.3 Partitions 1.3.4 Buckets 二、Hive读写文件机制 2.1 SerDe 作用 2.2 Hive读写文件流程 2.2.1 读取文件的过程 …

Java 抽象容器类源码剖析

总体介绍 抽象容器类接口和具体容器类的关系如图所示&#xff0c;顶层包括Collection、List、Set、Queue、Deque和Map6个抽象容器类。 AbstractCollection&#xff1a;实现了Collection接口&#xff0c;被抽象类AbstractList、AbstractSet、AbstractQueue继承&#xff0c;Arra…

文件上传漏洞--Upload-labs--Pass01--前端绕过

一、前端绕过原理 通俗解释&#xff0c;我们将写有恶意代码的php后缀文件上传到网页&#xff0c;网页中的javascript代码会先对文件的后缀名进行检测&#xff0c;若检测到上传文件的后缀名为非法&#xff0c;则会进行alert警告。若想上传php后缀的文件&#xff0c;就要想办法对…

东方博宜 1057. 能被5整除且至少有一位数字是5的所有整数的个数

东方博宜 1057. 能被5整除且至少有一位数字是5的所有整数的个数。 思路&#xff1a; 1 首先输入n 2 用for循环遍历1-n中间的数 3 每一个数进行对5取余的运算&#xff0c;看是否能被5整除 4 在整除的基础上&#xff0c;看这个数的各个数位上是否有5&#xff0c;这一步将数对10取…

【ChatIE】论文解读:Zero-Shot Information Extraction via Chatting with ChatGPT

文章目录 介绍ChatIEEntity-Relation Triple Extration (RE)Named Entity Recognition (NER)Event Extraction (EE) 实验结果结论 论文&#xff1a;Zero-Shot Information Extraction via Chatting with ChatGPT 作者&#xff1a;Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin W…

数据分析 — Pandas 数据加载、存储和清洗

目录 一、文件读取1、常见文件读取函数2、read_csv()3、read_table()4、read_excel()5、read_json()6、read_html()7、大文件读取 二、数据保存1、csv2、excel3、json4、html5、MySQL1、连接数据库2、MySQL 存储到本地3、本地存储到 MySQL 三、数据清洗1、处理缺失值1、判断数据…

【前端工程化面试题】如何优化提高 webpack 的构建速度

使用最新版本的 Webpack 和相关插件: 每个新版本的 Webpack 都会带来性能方面的改进和优化&#xff0c;因此始终确保你在使用最新版本。同时&#xff0c;更新你的相关插件也是同样重要的。 使用DllPlugin动态链接库: 使用DllPlugin和DllReferencePlugin来将第三方库的代码进行…

springboot单体项目快速生成代码

生成的是这些代码&#xff1a;controller,entity,mapper,service,service里面的impl,还有xml import com.baomidou.mybatisplus.core.exceptions.MybatisPlusException; import com.baomidou.mybatisplus.core.toolkit.StringPool; import com.baomidou.mybatisplus.core.toolk…

通过玩游戏学会AWS

游戏名字&#xff1a; Cloud Quest 类型&#xff1a;亚马逊云科技官方出了一款 3D 角色扮演、虚拟城市建造形式的游戏实验课 进入方法&#xff1a;浏览器搜索 Cloud Quest&#xff08;或扫描下方二维码&#xff09;进入 Cloud Quest 课程页。 选择以下的链接 点击进行注册 进…

C++并发编程 -3.同步并发操作

本文介绍如何使用条件变量控制并发的同步操作、C 并发三剑客&#xff0c;函数式编程 一.条件变量 1.概念 C条件变量&#xff08;condition variable&#xff09;是一种多线程编程中常用的同步机制&#xff0c;用于线程间的通信和协调。它允许一个或多个线程等待某个条件的发生…

自动更改由VSCode调试器创建的默认launch.json文件

File -> Preference -> Settings 修改下面的部分

[力扣 Hot100]Day28 两数相加

题目描述 给你两个 非空 的链表&#xff0c;表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的&#xff0c;并且每个节点只能存储 一位 数字。 请你将两个数相加&#xff0c;并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外&#xff0c;这两个数都…

java设计模式之解释器模式

解释器模式&#xff08;Interpreter Pattern&#xff09; 1.基本介绍 在编译原理中&#xff0c;一个算术表达式通过词法分析器形成词法单远&#xff0c;而这些词法单远再通过语法分析器构建语法分析树&#xff0c;最终形成一颗抽象的语法分析树&#xff0c;&#xff08;词法分…

第 124 场 LeetCode 双周赛题解

A 相同分数的最大操作数目 I 模拟 class Solution { public:int maxOperations(vector<int> &nums) {int n nums.size();int s nums[0] nums[1];int res 1;for (int i 2; i 1 < n; i 2)if (nums[i] nums[i 1] s)res;elsebreak;return res;} };B 进行操作…

JVM-JVM中对象的生命周期

申明&#xff1a;文章内容是本人学习极客时间课程所写&#xff0c;文字和图片基本来源于课程资料&#xff0c;在某些地方会插入一点自己的理解&#xff0c;未用于商业用途&#xff0c;侵删。 原资料地址&#xff1a;课程资料 对象的创建 常量池检查:检查new指令是否能在常量池…

专业140+总410+合工大合肥工业大学833信号分析与处理综合考研经验电子信息与通信工程,真题,大纲,参考书。

经过一年努力奋战&#xff0c;今年初试总分410&#xff0c;其中专业课833信号分析与处理综合&#xff08;ss和dsp&#xff09;140&#xff08;感谢信息通信Jenny老师去年的悉心指导&#xff09;&#xff0c;数一130&#xff0c;顺利上岸&#xff0c;被合工大录取&#xff0c;看…