数据结构从入门到精通——算法的时间复杂度和空间复杂度

算法的时间复杂度和空间复杂度

  • 前言
  • 一、算法效率
    • 1.1 如何衡量一个算法的好坏
    • 1.2 算法的复杂度
  • 二、时间复杂度
    • 2.1 时间复杂度的概念
    • 2.2 大O的渐进表示法
    • 2.3常见时间复杂度计算举例
    • 2.4等差数列计算公式
    • 2.5等比数列计算方法
  • 三、空间复杂度
  • 四、 常见复杂度对比
  • 五、 复杂度的oj练习


前言

算法的时间复杂度和空间复杂度是评估算法性能的两个重要指标。时间复杂度主要关注算法执行过程中所需的时间随输入规模的变化情况,而空间复杂度则关注算法执行过程中所需的最大存储空间或内存空间。

对于时间复杂度,它通常表示为一个大O表示法,如O(n)O(n^2)O(log n)等,其中n代表输入规模的大小。一个优秀的算法应该具有较低的时间复杂度,这意味着当输入规模增大时,算法的执行时间增长不会过快。例如,线性时间复杂度O(n)的算法在处理大规模数据时比二次时间复杂度O(n^2)的算法更加高效。

空间复杂度同样重要,它决定了算法执行过程中需要占用的内存空间。在某些情况下,空间复杂度甚至比时间复杂度更加关键,特别是在资源受限的环境中,如嵌入式系统或移动设备。因此,设计算法时需要在时间和空间之间做出权衡,以达到最佳的整体性能。

为了优化算法的时间复杂度和空间复杂度,开发者通常会采用一系列策略,如使用更高效的数据结构、减少不必要的计算、利用缓存机制等。此外,对于某些特定问题,还可以采用特定的算法设计技巧,如分治法、动态规划、贪心算法等,来降低算法的时间复杂度和空间复杂度。

需要注意的是,算法的时间复杂度和空间复杂度并不是绝对的评估标准。在实际应用中,还需要考虑算法的其他因素,如可读性、可维护性、可扩展性等。因此,在设计和选择算法时,需要综合考虑多个因素,以找到最适合特定应用场景的算法。

综上所述,算法的时间复杂度和空间复杂度是评估算法性能的关键指标。通过优化这两个指标,我们可以提高算法的执行效率,减少资源消耗,从而在实际应用中取得更好的效果。


一、算法效率

算法效率是评价一个算法性能优劣的重要指标,它决定了算法在处理大规模数据或复杂问题时所需的时间和空间资源。在信息技术迅猛发展的今天,算法效率的提升对于解决实际问题、提高软件性能、优化用户体验等方面都具有深远的意义。

一个高效的算法往往能够在较短的时间内完成计算任务,减少用户等待的时间,提升系统的响应速度。在数据处理领域,比如大数据分析、机器学习等,算法效率的高低直接关系到数据处理的速度和质量。一个高效的算法能够在短时间内处理大量数据,提取出有价值的信息,为决策提供有力支持。

除了时间效率,算法的空间效率同样重要。在资源有限的硬件环境下,算法的空间复杂度决定了程序能够处理的数据规模和复杂度。一个空间效率高的算法能够在有限的内存空间中处理更多数据,避免因为内存不足而导致的程序崩溃或性能下降。

在实际应用中,算法效率的提升往往需要通过算法优化和创新来实现。算法优化包括改进现有算法的实现方式、减少不必要的计算、利用并行计算等技术提高计算效率等。算法创新则是在原有算法的基础上进行突破,开发出全新的算法来解决传统算法无法高效处理的问题。

算法效率的提升对于整个信息技术领域都有着深远的影响。它不仅能够提高软件系统的性能和稳定性,还能够推动相关领域的技术进步和创新。随着算法研究的不断深入和发展,相信未来会有更多高效、实用的算法问世,为我们的生活和工作带来更多的便利和可能性。

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

long long Fib(int N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?

1.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

二、时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

Func1 执行的基本操作次数 :
在这里插入图片描述

  • N = 10 F(N) = 130
  • N = 100 F(N) = 10210
  • N = 1000 F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

  1. 用常数1取代运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:
在这里插入图片描述

  • N = 10 F(N) = 100
  • N = 100 F(N) = 10000
  • N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

  • 最好情况:1次找到
  • 最坏情况:N次找到
  • 平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.3常见时间复杂度计算举例

实例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;}printf("%d\n", count);
}

实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}

实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n-1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end-begin)>>1);if (a[mid] < x)begin = mid+1;else if (a[mid] > x)end = mid-1;elsereturn mid;}return -1;
}

实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

实例答案及分析:

  1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
  2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
  3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为O(1)
  4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
  5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)
  6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN)
    ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN
  7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)
  8. 实例8通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)

2.4等差数列计算公式

等差数列的计算公式是:

第n项: an = a1 + (n-1)d

其中,an表示第n项,a1表示首项,d表示公差。

等差数列求和公式如下:

Sn = (n/2)(2a + (n - 1)d)
Sn = (n/2)(a1 + an)

其中Sn表示等差数列的前n项和,a表示首项,d表示公差,n表示项数。

a1代表第一项,an代表第n项

例子:

求等差数列1, 3, 5, 7, 9的前5项和。

首项a = 1,公差d = 2,项数n = 5。

代入公式得到:

S5 = (5/2)(2*1 + (5 - 1)*2)= (5/2)(2 + 8)= (5/2)(10)= 25

所以1, 3, 5, 7, 9的前5项和为25。

2.5等比数列计算方法

等比数列是指数列中,任意两个相邻的数的比值都是一个常数。计算等比数列的方法有两种:根据公式计算和逐项计算。

  1. 根据公式计算:
    等比数列的通项公式为:an = a1 * q^(n-1),其中a1是首项,q是公比,n是项数。
    根据此公式,可以直接计算出数列中的任意一项。

  2. 逐项计算:
    根据等比数列的定义,可以逐项计算数列中的每一项。首先确定首项a1和公比q,然后按照以下步骤进行计算:

  • 第1项为a1
  • 第2项为a1 * q
  • 第3项为第2项 * q
  • 以此类推,每一项都是前一项乘以公比q

等比数列的求和公式为:Sn = a1 * (1 - q^n) / (1 - q),其中a1是首项,q是公比,n是项数。

根据这个公式,可以直接计算等比数列的和。

举例说明:
假设有一个等比数列:2, 4, 8, 16, 32,要求求和。

首项a1=2,公比q=2,项数n=5。

根据求和公式,代入对应的值进行计算:

Sn = 2 * (1 - 2^5) / (1 - 2)= 2 * (1 - 32) / (-1)= 2 * (-31) / (-1)= 62

所以,这个等比数列的和为62。

三、空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if(n==0)return NULL;long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}

实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}

实例答案及分析:

  1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)

  2. 实例2动态开辟了N个空间,空间复杂度为 O(N)

  3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

四、 常见复杂度对比

一般算法常见的复杂度如下:

在这里插入图片描述
在这里插入图片描述

五、 复杂度的oj练习

3.1消失的数字OJ链接
在这里插入图片描述
3.2 旋转数组OJ链接
在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/266770.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Data Leakage and Evaluation Issues inMicro-Expression Analysis 阅读笔记

IEEE Transactions on Affective Computing上的一篇文章&#xff0c;做微表情识别&#xff0c;阅读完做个笔记。本文讨论了Data Leakage对模型准确度评估的影响&#xff0c;及如何融合多个微表情数据集&#xff0c;从而提升模型的准确度。工作量非常饱满&#xff0c;很认真&…

蓝桥杯算法 一.

分析&#xff1a; 本题记录&#xff1a;m个数&#xff0c;异或运算和为0&#xff0c;则相加为偶数&#xff0c;后手获胜。 分析&#xff1a; 369*99<36500&#xff0c;369*100>36500。 注意&#xff1a;前缀和和后缀和问题

C++数据结构与算法——二叉搜索树的属性

C第二阶段——数据结构和算法&#xff0c;之前学过一点点数据结构&#xff0c;当时是基于Python来学习的&#xff0c;现在基于C查漏补缺&#xff0c;尤其是树的部分。这一部分计划一个月&#xff0c;主要利用代码随想录来学习&#xff0c;刷题使用力扣网站&#xff0c;不定时更…

获取PDF中的布局信息——如何获取段落

PDF解析是极其复杂的问题。不可能靠一个工具解决全部问题&#xff0c;尤其是五花八门&#xff0c;格式不统一的PDF文件。除非有钞能力。如果没有那就看看可以分为哪些问题。 提取文本内容&#xff0c;提取表格内容&#xff0c;提取图片。我认为这些应该是分开做的事情。python有…

[VNCTF2024]-PWN:preinit解析(逆向花指令,绕过strcmp,函数修改,机器码)

查看保护&#xff1a; 查看ida&#xff1a; 这边其实看反汇编没啥大作用&#xff0c;需要自己动调。 但是前面的绕过strcmp还是要看一下的。 解题&#xff1a; 这里是用linux自带的产生随机数的文件urandom来产生一个随机密码&#xff0c;然后让我们输入密码&#xff0c;用st…

msvcr120.dll丢失的解决办法的详细步骤,简单有效的解决msvcr120.dll丢失

当我们遇到电脑提示msvcr120.dll文件不见了时&#xff0c;无需过分紧张&#xff0c;因为这个问题有众多解决方案可供我们选择。今天我特意准备了一些应对这一问题的经验分享&#xff0c;并给大家带来一些独到的解决思路。让我们一起来探讨吧&#xff01; 一、先了解一下什么是m…

Swagger3 使用详解

Swagger3 使用详解 一、简介1 引入依赖2 开启注解3 增加一个测试接口4 启动服务报错1.5 重新启动6 打开地址&#xff1a;http://localhost:8093/swagger-ui/index.html 二、Swagger的注解1.注解Api和ApiOperation2.注解ApiModel和ApiModelProperty3.注解ApiImplicitParams和Api…

Huggingface初上手即ERNIE-gram句子相似性实战

大模型如火如荼的今天&#xff0c;不学点语言模型&#xff08;LM&#xff09;相关的技术实在是说不过去了。只不过由于过往项目用到LM较少&#xff0c;所以学习也主要停留在直面——动眼不动手的水平。Huggingface&#xff08;HF&#xff09;也是现在搞LM离不开的工具了。 出于…

k8s pv与pvc理解与实践

参考文章&#xff1a; https://blog.csdn.net/qq_41337034/article/details/117220475 一、 pv/pvc简述 Pv是指PersistentVolume&#xff0c;中文含义是持久化存储卷是对底层的共享存储的一种抽象&#xff0c;Pv由管理员进行配置和创建&#xff0c;只要包含存储能力&#xff…

Rocky Linux 安装部署 Zabbix 6.4

一、Zabbix的简介 Zabbix是一种开源的企业级监控解决方案&#xff0c;用于实时监测服务器、网络设备和应用程序的性能和可用性。它提供了强大的数据收集、处理和可视化功能&#xff0c;同时支持事件触发、报警通知和自动化任务等功能。Zabbix易于安装和配置&#xff0c;支持跨平…

论文阅读:2020GhostNet华为轻量化网络

创新&#xff1a;&#xff08;1&#xff09;对卷积进行改进&#xff08;2&#xff09;加残差连接 1、Ghost Module 1、利用1x1卷积获得输入特征的必要特征浓缩。利用1x1卷积对我们输入进来的特征图进行跨通道的特征提取&#xff0c;进行通道的压缩&#xff0c;获得一个特征浓…

C语言第三十三弹---动态内存管理(上)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 动态内存管理 1、为什么要有动态内存分配 2、malloc和free 2.1、malloc 2.2、free 3、calloc和realloc 3.1、calloc 3.2、realloc 4、常见的动态内存的错…

阿里云短信验证笔记

1.了解阿里云的权限操作 进入AccessKey管理 选择子用户 创建用户组和用户 先创建用户组&#xff0c;建好再进行权限分配 添加短信管理权限 创建用户 创建好后的id和密码在此处下载可以得到 2.开通阿里云短信服务 进行申请&#xff0c;配置短信模板 阿里云短信API文档 短信服务…

MySQL 逗号分隔查询--find_in_set()函数

业务场景&#xff1a; 在使用MySQL的时候&#xff0c;可能的某个字段存储的是一个英文逗号分割的字符串&#xff08;这里我们不讨论表设计的合理性&#xff09;&#xff0c;如图所示&#xff1a; 我们在查询的时候需要匹配逗号分割中的某个字符串&#xff0c;该怎么查询呢&am…

地图可视化绘制 | R-ggplot2 NC地图文件可视化

在推出两期数据分享之后&#xff0c;获取数据的小伙伴们也知道&#xff0c;数据格式都是NetCDF(nc) 格式网格数据&#xff0c;虽然我在推文分享中说明使用Python、R或者GIS类软件都是可以进行 处理和可视化绘制的&#xff0c;但是&#xff0c;还是有小伙伴咨询使用编程软件Pyth…

浅谈mysql mvcc

目录 前言 mvcc 是如何工作的&#xff1f; 数据的更新 前言 mvcc 与一个事物的隔离级别有关&#xff0c;未提交读永远读的是当前值&#xff0c;串行化是通过加锁实现&#xff0c;这两种隔离级别都与mvcc 没有任何关系。只要一提到mvcc应该想到的是读提交以及可重复读&#…

Spring八股 常见面试题

什么是Spring Bean 简单来说&#xff0c;Bean 代指的就是那些被 IoC 容器所管理的对象。我们需要告诉 IoC 容器帮助我们管理哪些对象&#xff0c;这个是通过配置元数据来定义的。配置元数据可以是 XML 文件、注解或者 Java 配置类。 将一个类声明为 Bean 的注解有哪些? Com…

【buuctf-gakki】

binwalk 查看图片&#xff0c;发现有 rar 文件&#xff0c;提取后如上图所示&#xff08;flag.txt为已经解压后出来的&#xff09;其中这个 rar 需要用 archpr爆破一下 打开后一个 flag.txt 一堆杂乱无章的字符&#xff0c;需要用到 python 脚本进行词频统计&#xff0c;我们…

Vue3 在SCSS中使用v-bind

template 先创建一个通用的页面结构 <template><div class"v-bubble-bg"></div> </template>js 在JS中先对需要用的数据进行定义&#xff1a; 可以是参数&#xff0c;也可以是data <script setup>const props defineProps({bgCol…

设计模式系列文章-7个创建型模式更新已完结

其实从2019年开始就有些一套关于设计模式的系列文章&#xff0c;但是因为种种原因一直搁置到现在。直到2024年才又恢复更新。 24年1月份上旬一直在弄博客站&#xff1a;https://jaune162.blog 的搭建 24年1月份下旬弄专题站&#xff1a;https://books.jaune162.blog 的搭建。…