【LeetCode 算法专题突破】---二分查找(⭐⭐⭐)

前言

我在算法题目的海洋中畅游已久,也曾在算法竞赛中荣获佳绩。然而,我发现自己对于算法的学习,还缺乏一个系统性的总结和归类。尽管我已经涉猎过不少算法类型,但心中仍旧觉得有所欠缺,未能形成完整的算法体系。

因此,我决定踏上这次算法之旅,对常见的算法进行一次全面的梳理与归类。我希望通过这个过程,能够更深入地理解每个经典算法类型的核心知识,加强我的算法能力,并完善自己的算法体系。

同时,我也希望能够将这次学习的成果与你分享,希望对你也有所帮助。让我们一同在算法的世界里探索、成长,共同迎接未来的挑战吧!

1.经典的不能在经典的二分查找(难度⭐)

Leetcode链接:704. 二分查找

1.1题目描述:

     这是一道非常典型的二分查找算法题目,可以说所有要学习二分查找算法的人都必须掌握这道题。题目要求很简单,就是在一个有序数组中查找目标值target。这道题是二分查找算法的入门题和模版题,没有掌握这道题就无法开始学习更复杂的二分查找算法题目。所以这道题对于二分查找算法的理解和掌握非常关键和必要。

1.2代码:

class Solution {
public:int search(vector<int>& nums, int target) {int left = 0, right = nums.size() - 1;int mid;while(left <= right){mid = (left + right)/2;if(nums[mid]>target){right = mid - 1;}else if(nums[mid]<target){left = mid + 1;}else{return mid;}}return -1;}
};

通过这道二分查找的典型题,我对二分查找算法的理解更进一步:

我对二分查找的区间划分有了更深的理解:

  • 当mid位置的值小于target时,证明左区间[left, mid-1]都不可能存在target,所以左区间变为[mid+1, right]。
  • 当mid位置的值大于target时,证明右区间[mid+1, right]都不可能存在target,所以右区间变为[left, mid-1]。
  • 当mid位置的值等于target时,就找到了目标值。

我理解到二分查找的本质就是通过比较中间mid值与target的值,可以排除一半的搜索区间,使搜索范围越来越小,直到找到target。

通过这道题我对二分查找算法模板有了更加熟练的掌握,可以应用到其他二分查找题目中去。

2.在排序数组中查找元素的第一个和最后一个位置(难度⭐⭐)

Leetcode链接:34. 在排序数组中查找元素的第一个和最后一个位置

2.1题目描述:

2.2代码:

class Solution {
public:vector<int> searchRange(vector<int>& nums, int target) {int left = 0, right = nums.size() - 1, begin = -1, end = -1, mid;//找到区间左边界while(left<=right){mid = (left + right)/2;if(nums[mid] > target){right = mid - 1;}else if(nums[mid] < target){left = mid + 1;}else{begin = mid;right--;//right区间左移,使得mid左移,直到到达左区间边界,此时right正好和left重合}}left = 0, right = nums.size() - 1;//找到区间有边界while(left<=right){mid = (left + right)/2;if(nums[mid] > target){right = mid - 1;}else if(nums[mid] < target){left = mid + 1;}else{end = mid;left++;//left区间右移,使得mid右移,直到到达又区间边界,此时left正好和right重合}}return {begin,end};}
};

这道题的大思路和上面的题并没有太大区别,只是为了找到左右区间,需要两次二分查找

具体来说,在求左右区间边界时,处理mid==target的情况需要进行特别考虑:

  • 求左区间边界时,需要在记录begin索引后,继续将right索引左移,使得mid向左逼近,直到不等于target时才能锁定左区间边界。
  • 求右区间边界时,需要在记录end索引后,继续将left索引右移,使得mid向右逼近,直到不等于target时才能锁定右区间边界。

这种细微的逻辑调整体现了二分查找的灵活性,在保持模板框架不变的情况下,通过简单逻辑修改就可应对新的问题。

3. 有效的完全平方数(难度⭐)

Leetcode链接:367. 有效的完全平方数

3.1题目描述:

撇开具体问题不讨论,假设需要找到完全平方数,你可能会采用这样的方法:将原数进行二分,然后将得到的中间值平方,观察是否等于目标值。如果相等,那么找到了完全平方数;如果不等,就可以根据大小关系缩小搜索范围,继续二分。为什么选择这种方式呢?因为这种方法的效率相对较高。既然如此,我们为何不考虑运用二分法来解决这类问题呢?

3.2代码:

class Solution {
public:bool isPerfectSquare(int num) {long long left = 0, right = num, mid = 0;long long s;while(left<=right){mid = (left + right)/2;s = mid * mid;if(s>num){right=mid-1;}else if(s<num){left=mid+1;}else{return true;}}return false;}
};

在这个解决方案中,我们并没有深入探讨具体的代码细节,只是简单地将二分算法应用于这个场景。然而,通过这个简单的经验,我们可以得出一个更加广泛的启示:如果今后遇到类似的问题,我们可以考虑运用二分法。

4.寻找峰值(难度⭐⭐)

二分熟练度up up up~

Leetcode链接:162. 寻找峰值

4.1题目描述:

在面对这个问题时,我们甚至没有提供目标值(target),而且输入序列并不保证是有序的。这是否意味着我们可以应用二分查找算法呢?
让我们尝试通过代码来展示这一思路,看看是否能够在这样的条件下成功运用二分查找的思想解决问题。

4.2代码:

class Solution {
public:int findPeakElement(vector<int>& nums) {int left = 0, right = nums.size() - 1, mid = 0;while(left<right){mid = (left + right)/2;if(nums[mid]>nums[mid + 1]){right = mid;}else{left = mid + 1;}}return right;}
};

初看之下,面对问题好像难以着手,但让我们仔细分析一下,看看能否找到解决方案。

题目要求在数组中找到任意一个峰值,那么我们可以考虑将数组分为两个区间:一个是递增区间,另一个是递减区间。峰值实际上是这两个区间的交界点。

假设我们随机选择一个点进行比较,如果它比右侧位置的值小,说明它在一个递增的区间;反之,如果它比右侧位置的值大,说明它在一个递减的区间。

基于这个性质,我们可以运用二分算法。当 nums[mid] < nums[mid+1] 时,表示在一个递增区间,峰值必定在 mid+1 及其之后的位置;而当 nums[mid] > nums[mid+1] 时,表示在一个递减区间,峰值可能在 mid 或其之前的位置(需要注意,峰值有可能就是在 mid 位置)。

因此,我们更新 right = mid,而不需要进行 -1 的操作。由于不需要 -1,当 left == right 时,如果已经找到峰值,我们应该如何退出循环呢?

这里可以进行特殊处理,或者将循环条件改成 left < right。在某些情况下,模板并不是固定不变的,我们可以根据实际情况进行调整。通过解决这道题,我们不仅学到了一些技巧,也积累了宝贵的经验。

5.寻找旋转排序数组中的最小值(难度⭐⭐)

Leetcode链接:153. 寻找旋转排序数组中的最小值

5.1题目描述:

这题的解题思路与前面一道问题相似,我们需要根据所给的条件找到一个可以进行比较的参照物或者说参照系。让我们来审视一下具体的代码。

5.2代码:

class Solution {
public:int findMin(vector<int>& nums) {int n = nums.size() - 1;int left = 0, right = n, mid = 0;while(left < right){mid = (left + right)/2;if(nums[mid] > nums[n]){left = mid + 1;}else if(nums[mid] < nums[n]){right = mid;}}return nums[left];}
};

考虑到题目给出的是一个经过旋转的升序数组,这使得数组不再是有序的,我们需要思考如何运用二分法来解决这一问题。

观察到,经过旋转的升序数组可以分为两个递增的区间,一个较大的区间和一个较小的区间。我们可以以区间的最大值作为参照物来进行分析。

以最右边的元素为例,它可能是小区间的最大值,也可能是大区间的最大值。如果它是大区间的最大值,这就意味着数组没有经过旋转,因此我们可以先忽略这种特殊情况(这是一个解题的小技巧,特殊情况可以后续再处理)。

题目要求找到最小的元素,即小区间的最小值。因此,我们需要找到小区间,并在其中找到最小元素。具体操作如下:

  • 当 nums[mid] > nums[n] 时,表示中间位置 mid 处于大区间,因此将 left 调整为 mid + 1;
  • 当 nums[mid] < nums[n] 时,表示中间位置 mid 处于小区间,因此将 right 调整为 mid。注意,这里不能减1,因为我们要找的值在小区间内,不能排除掉中间元素。
  • 接着,考虑特殊情况,即当 nums[mid] < nums[n] 时,数组的最右元素 n 是大区间的最大值。如果我们让 right = mid,会导致最终循环结束时出现 left = right 的情况。为了避免这种情况,我们将循环的条件调整为 left < right。

这道题是二分法的一个变式,关键在于找到以何为参照系来确定区间的位置,一旦确定,后续的工作就变得相对容易。

6.点名(难度⭐)

Leetcode链接:LCR 173. 点名

6.1题目描述:

这道题我其实一开始也想不出来,选这道题的目的其实也是想说明,算法积累的重要性,见多识广,才能思路开阔,临危不乱。

6.2代码:

class Solution 
{
public:int takeAttendance(vector<int>& records) {int n = records.size() - 1;int left = 0, right = n, mid = 0;while(left < right){mid = (left + right)/2;if(records[mid] == mid){left = mid + 1;}else{right = mid;}}if (records[right] == right) {return right+1;}return right;}
};

总结一下:

完成了这六道题目后,相信你对二分查找已经得心应手了~

接下来,继续努力,迎接新的挑战吧~

如果有一天觉得对二分有些生疏了,不妨回来再刷一遍,巩固一下技能~

最后,祝愿你未来的刷题之路愉快顺利~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/272017.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

问题解决 | vscode无法连接服务器而ssh和sftp可以

解决步骤 进入家目录删除.vscode-server rm -rf .vscode-server 然后再次用vscode连接服务器时&#xff0c;会重新安装&#xff0c;这时可能报出一些缺少依赖的错 需要联系管理员安装相关依赖&#xff0c;比如 sudo apt-get install libstdc6 至此问题解决

【数据结构】单链表的层层实现!! !

关注小庄 顿顿解馋(●’◡’●) 上篇回顾 我们上篇学习了本质为数组的数据结构—顺序表&#xff0c;顺序表支持下标随机访问而且高速缓存命中率高&#xff0c;然而可能造成空间的浪费&#xff0c;同时增加数据时多次移动会造成效率低下&#xff0c;那有什么解决之法呢&#xff…

打造经典游戏:HTML5与CSS3实现俄罗斯方块

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

机器学习开源分子生成系列(1)-DeepFrag的本地部署及使用

欢迎浏览我的CSND博客&#xff01; Blockbuater_drug …进入 文章目录 前言一、DeepFrag是什么&#xff1f;二、conda中安装DeepFrag CLI环境1. 创建环境并激活2. 下载pre-trained model3. DeepFrag CLI 使用方法必需参数&#xff1a;可选参数&#xff1a; 4. DeepFrag CLI 使用…

带摄像头的 AirPods,苹果会怎么做出来?

苹果对智能产品的设计&#xff0c;正在放飞自我。 根爆料&#xff0c;苹果在「未来设备」的规划里&#xff0c;有两个大胆的想法&#xff1a; 一是带有屏幕的 HomePod 正在研发中&#xff0c;当中将集成 Apple TV、FaceTime 等重多功能&#xff1b;二是配备摄像头的 AirPod…

201909青少年软件编程(Scratch)等级考试试卷(三级)

青少年软件编程&#xff08;Scratch&#xff09;等级考试试卷&#xff08;三级&#xff09;2019年9月 第1题&#xff1a;【 单选题】 执行下面的脚本后&#xff0c;变量“分数”的值是多少&#xff1f;&#xff08;&#xff09; A:5 B:6 C:10 D:25 【正确答案】: C 【试题…

[java基础揉碎]super关键字

super关键字: 基本介绍 super代表父类的引用&#xff0c;用于访问父类的属性、方法、构造器 super给编程带来的便利/细节 1.调用父类的构造器的好处(分工明确&#xff0c;父类属性由父类初始化&#xff0c;子类的属性由子类初始化) 2.当子类中有和父类中的成员(属性和方法)重…

新零售SaaS架构:订单履约系统架构设计(万字图文总结)

什么是订单履约系统&#xff1f; 订单履约系统用来管理从接收客户订单到将商品送达客户手中的全过程。 它连接了上游交易&#xff08;客户在销售平台下单环&#xff09;和下游仓储配送&#xff08;如库存管理、物流配送&#xff09;&#xff0c;确保信息流顺畅、操作协同&…

UDP实现文件的发送、UDP实现全双工的聊天、TCP通信协议

我要成为嵌入式高手之3月7日Linux高编第十七天&#xff01;&#xff01; ———————————————————————————— 回顾 重要程序 1、UDP实现文件的发送 发端&#xff1a; #include "head.h"int main(void) {int sockfd 0;struct sockaddr_i…

141 Linux 系统编程18 ,线程,线程实现原理,ps –Lf 进程 查看

一 线程概念 什么是线程 LWP&#xff1a;light weight process 轻量级的进程&#xff0c;本质仍是进程(在Linux环境下) 进程&#xff1a;独立地址空间&#xff0c;拥有PCB 线程&#xff1a;有独立的PCB&#xff0c;但没有独立的地址空间(共享) 区别&#xff1a;在于是否共…

一周学会Django5 Python Web开发-Django5内置模板引擎-模板上下文变量

锋哥原创的Python Web开发 Django5视频教程&#xff1a; 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计32条视频&#xff0c;包括&#xff1a;2024版 Django5 Python we…

瑞芯微 | I2S-音频基础 -1

最近调试音频驱动&#xff0c;顺便整理学习了一下i2s、alsa相关知识&#xff0c;整理成了几篇文章&#xff0c;后续会陆续更新。 喜欢嵌入式、Li怒晓得老铁可以关注一口君账号。 1. 音频常用术语 名称含义ADC&#xff08;Analog to Digit Conversion&#xff09;模拟信号转换…

第五十三回 入云龙斗法破高廉 黑旋风下井救柴进-AI训练数据处理和读取

罗真人教了公孙胜五雷天罡正法&#xff0c;并让他记住“逢幽而止&#xff0c;遇汴而环”八个字。三人辞别了罗真人&#xff0c;戴宗先回去报信&#xff0c;李逵和公孙胜结伴而行。 走了三天&#xff0c;来到了武冈镇&#xff0c;李逵碰到一个铁匠&#xff0c;叫金钱豹子汤隆&a…

启动查看工具总结

启动目标&#xff1a;2s内优秀&#xff0c;2-5s普通&#xff0c;之后的都需要优化&#xff0c;热启动则是1.5s-2s内 1 看下大致串联启动流程&#xff1a; App 进程在 Fork 之后&#xff0c;需要首先执行 bindApplication Application 的环境创建好之后&#xff0c;就开始activ…

去电脑维修店修电脑需要注意什么呢?装机之家晓龙

每当电脑出现故障时&#xff0c;你无疑会感到非常沮丧。 如果计算机已过了保修期&#xff0c;您将无法享受制造商的免费保修服务。 这意味着您必须自费找到一家电脑维修店。 去电脑维修店并不容易。 大家一定要知道&#xff0c;电脑维修非常困难&#xff0c;尤其是笔记本电脑维…

C#,数值计算,解微分方程的龙格-库塔四阶方法与源代码

Carl Runge Martin Wilhelm Kutta 1 龙格-库塔四阶方法 数值分析中&#xff0c;龙格&#xff0d;库塔法&#xff08;Runge-Kutta&#xff09;是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔龙格和马丁威尔海姆库塔于1900年左右发明。 对于一阶…

Python 全栈系列232 再次搭建RabbitMQ

说明 最近想重新上RabbitMQ&#xff0c;主要目的还是为了分布式任务调度。在Kafka和RabbitMQ两者犹豫了一下&#xff0c;还是觉得RabbitMQ好一些。 在20年的时候有搞过一阵子的RabbitMQ,看了下当时的几篇文章&#xff0c;觉得其实想法一直没变过。 Python - 装机系列24 消息…

贪心算法(greedy algorithm,又称贪婪算法)详解(附例题)

目录 基本思想一&#xff09;概念二&#xff09;找出全局最优解的要求三&#xff09;求解时应考虑的问题四&#xff09;基本步骤五&#xff09;贪心策略选择六&#xff09;实际应用 1.零钱找回问题2.背包问题3.哈夫曼编码4.单源路径中的Djikstra算法5.最小生成树Prim算法 基本…

构建留学平台技术架构:从设计到实现

随着全球化进程的加速和人们对国际教育的需求不断增长&#xff0c;留学行业也迎来了快速发展的机遇。作为留学服务的重要组成部分&#xff0c;留学平台的技术架构设计至关重要。本文将探讨留学平台技术架构的设计和实现过程&#xff0c;以及相关的技术选择、挑战和解决方案。 …

如何在Windows系统部署Jellyfin Server并实现公网访问内网影音文件

文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 1. 前言 随着移动智能设备的普及&#xff0c;各种各样的使用需求也被开发出来&…