STL之deque容器代码详解

1 基础概念

功能:

双端数组,可以对头端进行插入删除操作。

deque与vector区别:

  • vector对于头部的插入删除效率低,数据量越大,效率越低。

  • deque相对而言,对头部的插入删除速度回比vector快。

  • vector访问元素时的速度会比deque快,这和两者内部实现有关。

在这里插入图片描述

deque内部工作原理:

  • deque内部有个中控器,维护每段缓冲区中的内容,缓冲区中存放真实数据。

  • 中控器维护的是每个缓冲区的地址,使得使用deque时像一片连续的内存空间。

  • deque容器的迭代器也是支持随机访问的。

在这里插入图片描述

2 代码解释

Talk is cheap, show me the code.

#include<iostream>
using namespace std;
#include<deque>
#include<algorithm>void printDeque(const deque<int>& dd)
{//注意这里的只读迭代器的操作for (deque<int>::const_iterator it = dd.begin(); it != dd.end(); it++){cout << *it << " ";}cout << endl;
}/*
构造函数原型:
deque<T> deqT; //默认构造形式
deque(beg, end); //构造函数将[beg, end)区间中的元素拷贝给本身。
deque(n, elem); //构造函数将n个elem拷贝给本身。
deque(const deque &deq); //拷贝构造函数
*/void test01()
{deque<int> d1;for (int i = 0; i < 10; i++){d1.push_back(i);}printDeque(d1);deque<int> d2(d1.begin(), d1.end());printDeque(d2);deque<int> d3(10, 88);printDeque(d3);deque<int> d4(d3);printDeque(d4);}/*
赋值函数原型:
deque& operator=(const deque &deq); //重载等号操作符
assign(beg, end); //将[beg, end)区间中的数据拷贝赋值给本身。
assign(n, elem); //将n个elem拷贝赋值给本身。
*/void test02()
{deque<int> d1;for (int i = 0; i < 10; i++){d1.push_back(i);}deque<int> d2;d2 = d1;printDeque(d2);deque<int> d3;d3.assign(d2.begin(), d2.end());printDeque(d3);deque<int> d4;d4.assign(10, 88);printDeque(d4);
}/*
大小操作函数原型:
deque.empty(); //判断容器是否为空
deque.size(); //返回容器中元素的个数
deque.resize(num); //重新指定容器的长度为num,若容器变长,则以默认值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
deque.resize(num, elem); //重新指定容器的长度为num,若容器变长,则以elem值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
*/// 我们发现跟vector相比没有了capacity容量相关的操作,因为可以无限地扩展,只需要有一段地址来维护空间void test03()
{deque<int> d1;for (int i = 0; i < 10; i++){d1.push_back(i);}printDeque(d1);if (d1.empty()){cout << "EMPTY" << endl;}else{cout << d1.size() << endl;}d1.resize(20, 999);printDeque(d1);
}/*
插入和删除函数原型:
两端插入操作:
push_back(elem); //在容器尾部添加一个数据
push_front(elem); //在容器头部插入一个数据
pop_back(); //删除容器最后一个数据
pop_front(); //删除容器第一个数据
指定位置操作:
insert(pos,elem); //在pos位置插入一个elem元素的拷贝,返回新数据的位置。
insert(pos,n,elem); //在pos位置插入n个elem数据,无返回值。
insert(pos,beg,end); //在pos位置插入[beg,end)区间的数据,无返回值。
clear(); //清空容器的所有数据
erase(beg,end); //删除[beg,end)区间的数据,返回下一个数据的位置。
erase(pos); //删除pos位置的数据,返回下一个数据的位置。
*/void test04()
{deque<int> d1;d1.push_back(100);d1.push_back(100);d1.push_back(100);d1.push_back(100);d1.push_back(100);d1.push_back(100);printDeque(d1);d1.push_front(200);printDeque(d1);d1.pop_back();printDeque(d1);d1.pop_front();printDeque(d1);d1.insert(d1.begin() + 2, 5, 1000);printDeque(d1);d1.insert(d1.end() - 1, d1.begin(), d1.end());printDeque(d1);d1.erase(d1.begin()+1);printDeque(d1);d1.clear();printDeque(d1);}/*
数据存取函数原型:
at(int idx); //返回索引idx所指的数据
operator[]; //返回索引idx所指的数据
front(); //返回容器中第一个数据元素
back(); //返回容器中最后一个数据元素
*/void test05()
{deque<int> d1;for (int i = 0; i < 10; i++){d1.push_back(i);}printDeque(d1);cout << d1.at(2) << endl;cout << d1[2] << endl;cout << d1.front() << endl;cout << d1.back() << endl;
}/*
排序算法:
sort(iterator beg, iterator end) //对beg和end区间内元素进行排序
*/void test06()
{deque<int> d1;d1.push_back(10);d1.push_back(20);d1.push_back(15);d1.push_front(89);d1.push_front(78);d1.push_front(99);printDeque(d1);sort(d1.begin(), d1.end());printDeque(d1);
}int main()
{test01();test02();test03();test04();test05();test06();system("pause");return 0;
}

3 应用场景

C++标准模板库(STL)中的deque(双端队列)容器是一种支持在两端高效插入和删除操作的数据结构。它在实际项目中有许多应用场景,其中一些例子包括:

  1. 任务调度队列: 在多线程或并发编程中,deque可以用作任务调度队列。新任务可以在队列的前端或后端插入,而工作线程可以从队列的另一端获取任务执行。这种方式允许高效的任务调度和分发。

    #include <deque>
    #include <mutex>
    #include <thread>std::deque<Task> taskQueue;
    std::mutex queueMutex;void AddTask(const Task& task) {std::lock_guard<std::mutex> lock(queueMutex);taskQueue.push_back(task);
    }Task GetTask() {std::lock_guard<std::mutex> lock(queueMutex);Task task = taskQueue.front();taskQueue.pop_front();return task;
    }
    
  2. 实时数据流处理: 在需要高性能数据流处理的应用中,deque可以用于缓存数据,支持快速的数据插入和删除。这对于实时数据处理系统(如金融数据处理或传感器数据处理)非常有用。

    #include <deque>
    #include <iostream>void ProcessData(std::deque<Data>& dataQueue) {// 实时数据处理逻辑while (!dataQueue.empty()) {Data currentData = dataQueue.front();dataQueue.pop_front();// 处理数据...}
    }
    
  3. 存储历史记录: 在需要保留最近N个元素的场景中,deque可以用于实现一个固定大小的历史记录缓存。新元素可以从一端插入,而旧元素可以从另一端删除,以保持缓存的大小。

    #include <deque>
    #include <iostream>const int MaxHistorySize = 10;
    std::deque<Record> historyDeque;void AddToHistory(const Record& record) {historyDeque.push_back(record);if (historyDeque.size() > MaxHistorySize) {historyDeque.pop_front();}
    }
    
  4. 实现高效的双端队列: 当需要在两端执行频繁插入和删除操作时,使用deque而不是vector可能更为高效,因为deque的设计允许在两端进行快速操作,而vector在插入或删除头部元素时的性能较差。

总的来说,deque是一个灵活的数据结构,适用于许多不同的应用场景,其中需要高效支持两端操作的情况。

4 实际用例

下面是一个简单的示例,演示了使用deque相对于vector在频繁插入和删除操作时的优势。这个示例模拟一个实时日志系统,其中日志消息被不断添加到队列,并定期删除旧的日志消息,以保持队列的大小。

#include <iostream>
#include <deque>
#include <ctime>
#include <cstdlib>struct LogMessage {std::string message;time_t timestamp;
};class RealTimeLogger {
public:void AddLog(const std::string& message) {LogMessage log;log.message = message;log.timestamp = std::time(nullptr);logQueue.push_back(log);}void PruneOldLogs() {const int MaxLogCount = 5;while (logQueue.size() > MaxLogCount) {logQueue.pop_front();}}void PrintLogs() {for (const auto& log : logQueue) {std::cout << "[" << log.timestamp << "] " << log.message << std::endl;}std::cout << std::endl;}private:std::deque<LogMessage> logQueue;
};int main() {RealTimeLogger logger;// 模拟日志生成for (int i = 0; i < 10; ++i) {logger.AddLog("Log message #" + std::to_string(i));logger.PruneOldLogs();logger.PrintLogs();}return 0;
}

在这个示例中,RealTimeLogger类使用deque作为存储日志消息的容器。在每次添加日志消息时,它会执行PruneOldLogs方法来删除旧的消息,以保持队列的大小。由于deque支持在两端高效地进行插入和删除操作,这个实现在频繁添加和删除日志消息时的性能表现更好。

当使用vector时,由于在头部删除元素的代价相对较高,性能可能不如deque。在实际项目中,这种优势可能在需要处理大量实时数据的场景下更为明显,例如日志记录、事件处理等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/272592.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

jpg 转 ico 强大的图片处理工具 imageMagick

点击下载 windows, mac os, linux版本 GitHub - ImageMagick/ImageMagick: &#x1f9d9;‍♂️ ImageMagick 7 1. windows程序 链接&#xff1a;https://pan.baidu.com/s/1wZLqpcytpCVAl52pIrBBEw 提取码&#xff1a;hbfy 一直点击下一步安装 2. 然后 winr键 打开cmd 然…

SSD的原理

简介 SSD&#xff08;Solid State Drive&#xff09;是一种使用闪存存储芯片&#xff08;NAND Flash&#xff09;的存储设备。与传统的机械硬盘不同&#xff0c;SSD没有移动部件&#xff0c;因此具有更快的读写速度和更低的能耗。 架构 NAND Flash是一种非易失性存储器&…

nodejs web服务器 -- 搭建开发环境

一、配置目录结构 1、使用npm生成package.json&#xff0c;我创建了一个nodejs_network 文件夹&#xff0c;cd到这个文件夹下&#xff0c;执行&#xff1a; npm init -y 其中-y的含义是yes的意思&#xff0c;在init的时候省去了敲回车的步骤&#xff0c;如此就生成了默认的pac…

008-slot插槽

slot插槽 1、插槽 slot 的简单使用2、插槽分类2.1 默认插槽2.2 具名插槽2.3 作用域插槽 插槽就是子组件中的提供给父组件使用的一个占位符&#xff0c;用<slot></slot> 表示&#xff0c;父组件可以在这个占位符中填充任何模板代码&#xff0c;如 HTML、组件等&…

cannot import name ‘Flask‘ from partially initialized module ‘flask‘

bug&#xff1a; ImportError: cannot import name Flask from partially initialized module flask (most likely due to a circular import) (G:\pythonProject6\flask.py) 这个是因为包的名字和文件的名字一样 修改文件名&#xff1a; 结果 &#x1f923;&#x1f923;&…

nginx配置支持ipv6访问,ipv4改造ipv6

一、前言 本地测试nginx部署的web系统支持ipv6地址访问。 二、本机ipv6地址 cmd ipconfig 找到IPv6地址 其中带有%号其实是临时分配得到地址 我们可以ping一下看看 另一种ping的方式 加上中括号 还有就是去掉%号 三、nginx增加配置 server块里增加 listen [::]:80; 四、测…

arcgis 栅格数据处理2——栅格转地级市(栅格转矢量图)

1. 获取空间分析权限&#xff08;解决无法执行所选工具问题&#xff09; 选中“自定义”中的“扩展模块” 在弹出的模块中选中能选的模块&#xff0c;此处需要选择“spatial analysis”以进行下一步分析 3. 将栅格数据转为整数型&#xff08;解决无法矢量化&#xff09; 选…

【Python+Selenium学习系列5】Selenium特殊元素定位之-鼠标悬停操作

前言 Selenium模拟用户在浏览器中的操作&#xff0c;比如点击按钮。在某些场景下&#xff0c;我们需要模拟鼠标悬停的操作&#xff0c;来触发一些隐藏的元素。本文将介绍Python Selenium实现鼠标悬停操作。 鼠标悬停&#xff0c;即当光标与其名称表示的元素重叠时触发的事件&…

DeepLearning in Pytorch|共享单车预测NN详解(思路+代码剖析)

目录 概要 一、代码概览 二、详解 基本逻辑 1.数据准备 2.设计神经网络 初版 改进版 测试 总结 概要 原文链接&#xff1a;DeepLearning in Pytorch|我的第一个NN-共享单车预测 我的第一个深度学习神经网络模型---利用Pytorch设计人工神经网络对某地区租赁单车的使用…

全网最最最详细centos7如何安装docker教程

在CentOS 7上安装Docker主要包括以下步骤&#xff1a; 1. 卸载旧版本的Docker 首先&#xff0c;需要确保系统上没有安装旧版本的Docker。可以通过以下命令来卸载它们&#xff1a; sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-late…

数据类型与运算符

关键字 C语言自己定义的一些单词 标识符//标志 定义 如变量&#xff0c;方法名&#xff0c;参数名&#xff0c;数组名等 要求 只有字母&#xff0c;数字下划线 不能以数字开头 不能用关键字 区分大小写 常量&#xff0c;变量 常量&#xff1a;不可变的量 变量&#xff1a;在程…

Linux安全--为Nginx加上PHP解析功能

yum install php-fpm -y安装php进程管理器 找到Nginx安装的路径 编辑Nginx配置文件

STL容器之哈希的补充——其他哈希问题

1.其他哈希问题 ​ 减少了空间的消耗&#xff1b; 1.1位图 ​ 位图判断在不在的时间复杂度是O(1)&#xff0c;速度特别快; ​ 使用哈希函数直接定址法&#xff0c;1对1映射&#xff1b; ​ 对于海量的数据判断在不在的问题&#xff0c;使用之前的一些结构已经无法满足&…

echarts中toolbox 中文乱码问题

问题描述 本地引用的echarts源文件&#xff0c;页面其他部分编码显示正常&#xff0c;唯独toolbox鼠标悬停在上面时提示信息显示乱码。 如图所示&#xff1a; 尝试过的方法 使用sublime text 3&#xff0c;notepad&#xff0c;记事本更改文件编码为utf-8引入时&#xff0c;在sc…

LVS集群(Linux Virtual server)介绍----及LVS的NAT模式部署(一)

群集的含义 ●Cluster&#xff0c;集群、群集由多台主机构成&#xff0c;但对外只表现为一个整体&#xff0c;只提供访问入口(域名或IP地址)&#xff0c;相当于一台大型计算机 问题&#xff1a; 互联网应用中&#xff0c;随着站点对硬件性能、响应速度、服务稳定性、数据可靠…

Nacos2.2.3之MySQL8.X持久化详细配置过程

Nacos2.2.3之MySQL8.X持久化详细配置过程 文章目录 Nacos2.2.3之MySQL8.X持久化详细配置过程1. 官网与下载1. 官网2. Naocs是什么&#xff1f;3. 下载 2. 安装与持久化配置1. 解压安装2. 创建数据库1. 连接数据库2. 创建nacos数据库3. 导入脚本4. 查看表 3. 持久化配置1. appli…

【Linux】编译器-gcc/g++使用

个人主页 &#xff1a; zxctscl 文章封面来自&#xff1a;艺术家–贤海林 如有转载请先通知 文章目录 1. 前言2. 初见gcc和g3. 程序的翻译过程3.1 预处理3.1.1 宏替换 去注释 头文件展开3.1.2 条件编译 3.2 编译3.3 汇编3.4 链接 4. 链接4.1 动态链接4.2 静态链接 1. 前言 在之…

OpenStack之keystone(用户认证)

Keystone&#xff08;认证&#xff09; Keystone 概述 1)管理用户及其权限 2)维护OpenStack Services 的 Endpoint 3)Authentication&#xff08;认证&#xff09;和 Authorization&#xff08;授权&#xff09; keystone的名词概念 1.User&#xff08;用户或服务&#xf…

C++内存管理篇

文章目录 1. C/C内存分布2. C中的内存管理方式3. operator new和operator delete函数4. new和delete的实现原理5. 定位new表达式(placement-new) 1. C/C内存分布 C语言中&#xff0c;为了方便管理内存空间&#xff0c;将内存分成了不同的区域&#xff0c;每个区域管理不同的数据…

代码随想录训练营第41天 | 动态规划:01背包理论基础、动态规划:01背包理论基础(滚动数组)、LeetCode 416.分割等和子集

动态规划&#xff1a;01背包理论基础 文章讲解&#xff1a;代码随想录(programmercarl.com) 视频讲解&#xff1a;带你学透0-1背包问题&#xff01;_哔哩哔哩_bilibili 动态规划&#xff1a;01背包理论基础&#xff08;滚动数组&#xff09; 文章讲解&#xff1a;代码随想录(…