利用GPT开发应用001:GPT基础知识及LLM发展

文章目录

  • 一、惊艳的GPT
  • 二、大语言模型LLMs
  • 三、自然语言处理NLP
  • 四、大语言模型LLM发展

一、惊艳的GPT

  想象一下,您可以与计算机的交流速度与与朋友交流一样快。那会是什么样子?您可以创建哪些应用程序?这正是OpenAI正在助力构建的世界,他们的GPT模型为我们的设备带来了类似人类对话能力的功能。

  GPT的全称,是Generative Pre-Trained Transformer(生成式预训练Transformer模型)是一种基于互联网的、可用数据来训练的、文本生成的深度学习模型。GPT与专注于下围棋或机器翻译等某一个具体任务的“小模型”不同,AI大模型更像人类的大脑。它兼具“大规模”和“预训练”两种属性,可以在海量通用数据上进行预先训练,能大幅提升AI的泛化性、通用性、实用性。

  作为人工智能(AI)领域的最新进展,GPT-4(Generative Pre-trained Transformer - 4)和ChatGPT(Chat Generative Pre-trained Transformer)是基于大量数据训练的大型语言模型(Large Language Models - LLMs),使它们能够以非常高的准确性识别和生成类似人类的文本。

  这些人工智能模型的影响远不止于简单的语音助手。得益于OpenAI的模型,开发者现在可以利用自然语言处理(Natural Language Processing - NLP)的力量创建了解我们需求的应用程序,这在过去曾是科幻小说。从学习并适应的创新客户支持系统到理解每个学生独特学习风格的个性化教育工具,GPT-4和ChatGPT打开了一个全新的可能性世界。

  但GPT-4和ChatGPT究竟是什么?我们需要深入探讨这些AI模型基础知识、起源和关键特征。通过理解这些模型的基本原理,您将为基于这些新强大技术构建下一代应用程序迈出重要的一步。


二、大语言模型LLMs

  作为大语言模型(Large Language Models - LLMs),GPT-4和ChatGPT是自然语言处理(Natural Language Processing - NLP)领域最新的模型类型,而NLP本身是机器学习(Machine Learning - ML)人工智能(AI)的一个子领域。因此,在我们深入了解GPT-4和ChatGPT之前,让我们快速了解一下NLP和其他相关领域。

  对于人工智能有不同的定义,但其中一个更多或少得到共识的说法是,人工智能指的是开发能够执行通常需要人类智能的任务的计算机系统。根据这个定义,许多算法都属于人工智能范畴。比如,在GPS应用中的交通预测任务或者战略视频游戏中使用的基于规则的系统。从外部看,这些例子中,机器似乎需要智能来完成这些任务。

  机器学习(Machine Language - ML)是人工智能(AI)的一个子集。在机器学习中,我们不试图直接实现人工智能系统所使用的决策规则。相反,我们尝试开发算法,让系统能够通过示例自我学习。自从上世纪50年代开始进行机器学习研究以来,许多机器学习算法已经在科学文献中被提出。其中,深度学习(Deep Learning - DL)算法是机器学习模型的著名示例,而GPT-4和ChatGPT是基于一种称为transformers的特定类型深度学习算法。下图展示了这些术语之间的关系。

在这里插入图片描述

三、自然语言处理NLP

  自然语言处理(Natural Language Processing - NLP)是一种人工智能应用,专注于计算机与自然人类语言文本之间的交互。现代NLP解决方案基于机器学习算法。NLP的目标是让计算机理解自然语言文本。这一目标涵盖了广泛的任务:

  • 文本分类
    将输入的文本划分为预定义的组别。例如,包括情感分析和主题分类等任务。

  • 自动翻译
    将文本从一种语言自动翻译成另一种语言。

  • 问答
    根据给定的文本回答问题。

  • 文本生成
    基于给定的输入文本(称为提示),模型生成连贯和相关的输出文本。


四、大语言模型LLM发展

  正如前面提到的,大语言模型(Large Language Models - LLM)是一种试图解决文本生成任务的机器学习模型。LLMs使计算机能够理解、解释和生成人类语言,从而实现更加有效的人机交流。为了做到这一点,LLMs分析或训练大量的文本数据,从而学习句子中单词之间的模式和关系。通过给定输入文本,这种学习过程使LLMs能够对最有可能出现的下一个单词进行预测,并以此方式生成对文本输入有意义的回应。最近几个月发布的现代语言模型非常庞大,并且经过了大量的文本训练,它们现在可以直接执行大多数NLP任务,如文本分类、机器翻译、问答等。GPT-4和ChatGPT模型是两种在文本生成任务上表现优异的现代LLMs。

  LLMs的发展可以追溯到数年前。它始于简单的语言模型,比如n-gram模型,它试图基于前面的单词来预测句子中的下一个单词。n-gram模型使用频率来实现这一点。预测的下一个单词是在它训练过的文本中跟随前面单词最频繁出现的单词。虽然这种方法是一个良好的开端,但它需要在理解上下文和语法方面有所改进,以避免生成不一致的文本。

  为了提高这些n-gram模型的性能,引入了更先进的学习算法,包括循环神经网络(Recurrent Neural Networks - RNN)长短期记忆网络(long short term memory networks - LSTM)。这些模型能够学习更长的序列并比n-gram模型更好地分析上下文,但它们仍然需要帮助以高效处理大量数据。这些类型的循环模型长时间以来一直是最高效的模型,因此在自动机器翻译等工具中被广泛使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/272973.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ELFK 分布式日志收集系统

ELFK的组成: Elasticsearch: 它是一个分布式的搜索和分析引擎,它可以用来存储和索引大量的日志数据,并提供强大的搜索和分析功能。 (java语言开发,)logstash: 是一个用于日志收集,处理和传输的…

Linux系统下使用C++推流多路视频流

先看拉取的视频流效果: 代码如下: 一开始打算使用python写多路视频推流,但在ubuntu系统上搞了好久就是搞不定openh264导致的错误,然后改用c了,代码如下,我这里推了两路视频流,一路是网络摄像头&…

2024护网面试题精选(二)完

0x02. 内网渗透篇 00- 内网渗透的流程 拿到跳板后,先探测一波内网存活主机,用net user /domian命令查看跳板机是否在域 内,探测存活主机、提权、提取hash、进行横向移动,定位dc位置,查看是否有能直接提权域 管的漏洞…

pytorch什么是梯度

目录 1.导数、偏微分、梯度1.1 导数1.2 偏微分1.3 梯度 2. 通过梯度求极小值3. learning rate3. 局部最小值4. Saddle point鞍点 1.导数、偏微分、梯度 1.1 导数 对于yx 2 2 2 的导数,描述了y随x值变化的一个变化趋势,导数是个标量反应的是变化的程度&…

【HTML】HTML基础7.1(无序列表)

目录 标签 属性 效果 注意 标签 <ul> <li>列表里要装的东西</li> <li>列表里要装的东西</li> <li>列表里要装的东西</li> </ul> 属性 type&#xff1a; circle空心圆disc实心圆square方框 效果 circle空心圆效果…

vi/vim编辑器

vi/vim编辑器 vi的特点与运用场景vi的使用简易执行一个案例按键说明第一部分&#xff1a;命令模式的按键说明(光标移动、复制粘贴、查找替换)第二部分&#xff1a;命令模式切换到输入模式的可以按键第三部分&#xff1a;命令模式切换到底线命令模式的可用按键 命令行模式的保存…

【fastllm】学习框架,本地运行,速度还可以,可以成功运行chatglm2模型

1&#xff0c;关于 fastllm 项目 https://www.bilibili.com/video/BV1fx421k7Mz/?vd_source4b290247452adda4e56d84b659b0c8a2 【fastllm】学习框架&#xff0c;本地运行&#xff0c;速度还可以&#xff0c;可以成功运行chatglm2模型 https://github.com/ztxz16/fastllm &am…

ai学习前瞻-python环境搭建

python环境搭建 Python环境搭建1. python的安装环境2. MiniConda安装3. pycharm安装4. Jupyter 工具安装5. conda搭建虚拟环境6. 安装python模块pip安装conda安装 7. 关联虚拟环境运行项目 Python环境搭建 1. python的安装环境 ​ python环境安装有4中方式。 从上图可以了解…

YOLO语义分割标注文件txt还原到图像中

最近做图像分割任务过程中&#xff0c;使用labelme对图像进行标注&#xff0c;得到的数据文件是json&#xff0c;转换为YOLO训练所需的txt格式后&#xff0c;想对标注文件进行检验&#xff0c;即将txt标注文件还原到原图像中&#xff0c;下面是代码&#xff1a; import cv2 im…

C++指针(五)完结篇

个人主页&#xff1a;PingdiGuo_guo 收录专栏&#xff1a;C干货专栏 前言 相关文章&#xff1a;C指针&#xff08;一&#xff09;、C指针&#xff08;二&#xff09;、C指针&#xff08;三&#xff09;、C指针&#xff08;四&#xff09;万字图文详解&#xff01; 本篇博客是介…

交易平台开发:构建安全/高效/用户友好的在线交易生态圈

在数字化浪潮的推动下&#xff0c;农产品现货大宗商品撮合交易平台已成为连接全球买家与卖家的核心枢纽。随着电子商务的飞速发展&#xff0c;一个安全、高效、用户友好的交易平台对于促进交易、提升用户体验和增加用户黏性至关重要。本文将深入探讨交易平台开发的关键要素&…

git学习(创建项目提交代码)

操作步骤如下 git init //初始化git remote add origin https://gitee.com/aydvvs.git //建立连接git remote -v //查看git add . //添加到暂存区git push 返送到暂存区git status // 查看提交代码git commit -m初次提交git push -u origin "master"//提交远程分支 …

Pytorch学习 day09(简单神经网络模型的搭建)

简单神经网络模型的搭建 针对CIFAR 10数据集的神经网络模型结构如下图&#xff1a; 由于上图的结构没有给出具体的padding、stride的值&#xff0c;所以我们需要根据以下公式&#xff0c;手动推算&#xff1a; 注意&#xff1a;当stride太大时&#xff0c;padding也会变得很大…

视频推拉流EasyDSS平台直播通道重连无法转推的原因排查与解决

视频推拉流EasyDSS视频直播点播平台&#xff0c;集视频直播、点播、转码、管理、录像、检索、时移回看等功能于一体&#xff0c;可提供音视频采集、视频推拉流、播放H.265编码视频、存储、分发等视频能力服务。 用户使用EasyDSS平台对直播通道进行转推&#xff0c;发现只要关闭…

AOP切面编程,以及自定义注解实现切面

AOP切面编程 通知类型表达式重用表达式切面优先级使用注解开发&#xff0c;加上注解实现某些功能 简介 动态代理分为JDK动态代理和cglib动态代理当目标类有接口的情况使用JDK动态代理和cglib动态代理&#xff0c;没有接口时只能使用cglib动态代理JDK动态代理动态生成的代理类…

【滑动窗口】力扣239.滑动窗口最大值

前面的文章我们练习数十道 动态规划 的题目。相信小伙伴们对于动态规划的题目已经写的 得心应手 了。 还没看过的小伙伴赶快关注一下&#xff0c;学习如何 秒杀动态规划 吧&#xff01; 接下来我们开启一个新的篇章 —— 「滑动窗口」。 滑动窗口 滑动窗口 是一种基于 双指…

03.axios数据提交和错误处理

一.axios常用请求方法和数据提交 1. 想要提交数据&#xff0c;先来了解什么是请求方法 请求方法是一些固定单词的英文&#xff0c;例如&#xff1a;GET&#xff0c;POST&#xff0c;PUT&#xff0c;DELETE&#xff0c;PATCH&#xff08;这些都是http协议规定的&#xff09;&am…

axios的详细使用

目录 axios&#xff1a;现代前端开发的HTTP客户端王者 一、axios简介 二、axios的基本用法 1. 安装axios 2. 发起GET请求 3. 发起POST请求 三、axios的高级特性 1. 拦截器 2. 取消请求 3. 自动转换JSON数据 四、axios在前端开发中的应用 五、总结 axios&#xff1a…

vue中性能优化

目录 1. 编码优化 2. 源码优化 3. 打包优化 4. 利用 Vue Devtools 总结 Vue.js 作为一个强大的前端框架&#xff0c;提供了丰富的功能和工具来帮助开发者构建高效的 Web 应用。然而&#xff0c;在开发过程中&#xff0c;性能优化仍然是一个需要关注的问题。以下是对 Vue.j…

3/7—21. 合并两个有序链表

代码实现&#xff1a; 方法1&#xff1a;递归 ---->难点 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode* mergeTwoLists(struct ListNode *list1, struct ListNode *list2) {/*1.如果l1为…