tensorflow.js 如何使用opencv.js通过面部特征点估算脸部姿态并绘制示意图

文章目录

  • 前言
  • 一、实现步骤
    • 1. 获取所需特征点的索引
    • 2. 使用opencv.js 计算俯仰角、水平角和翻滚角
      • cv.solvePnP介绍
      • cv.solvePnP原理
      • 运行代码查看效果
    • 3.绘制姿态示意直线
      • 添加canvas元素
      • 计算姿态直线坐标并绘制
  • 总结


前言

在计算机视觉领域,估算脸部姿态是一项具有挑战性但又极具应用前景的任务。通过识别脸部特征点,我们可以了解人脸的姿态,包括旋转角度、倾斜程度等信息。本文将介绍如何利用 TensorFlow.js 和 OpenCV.js 结合起来,实现通过面部特征点估算脸部姿态并绘制示意图的功能。


一、实现步骤

本文将基于文章如何使用tensorflow.js实现面部特征点检测中实现的人脸特征点检测继续根据人脸特征点实现人脸姿态的估计和绘制。

1. 获取所需特征点的索引

我们可以从示例项目看到注释的主要特征点索引如下:
请添加图片描述

2. 使用opencv.js 计算俯仰角、水平角和翻滚角

我们可以从示例项目看到计算的相关代码如下:

 var modelPoints = window.cv.matFromArray(6, 3, window.cv.CV_32F, [0.0,0.0,0.0, // Nose tip0.0,-330.0,-65.0, // Chin-225.0,170.0,-135.0, // Left eye left corner225.0,170.0,-135.0, // Right eye right corne-150.0,-150.0,-125.0, // Left Mouth corner150.0,-150.0,-125.0, // Right mouth corner]);var imagePoints = window.cv.matFromArray(6, 2, window.cv.CV_32F, [keyPoints[4].x,keyPoints[4].y, // Nose tipkeyPoints[152].x,keyPoints[152].y, // ChinkeyPoints[263].x,keyPoints[263].y, // Left eye left cornerkeyPoints[33].x,keyPoints[33].y, // Right eye right cornekeyPoints[308].x,keyPoints[308].y, // Left Mouth cornerkeyPoints[78].x,keyPoints[78].y, // Right mouth corner]);var focal_length = inputResolution.width;var center = [inputResolution.width / 2, inputResolution.height / 2];var cameraMatrix = window.cv.matFromArray(3, 3, window.cv.CV_64F, [focal_length,0,center[0],0,focal_length,center[1],0,0,1,]);// console.log("Camera Matrix", cameraMatrix.data64F);var distCoeffs = window.cv.matFromArray(4,1,window.cv.CV_64F,[0, 0, 0, 0]); // Assuming no lens distortionvar rvec = new window.cv.Mat(3, 1, window.cv.CV_64F);var tvec = new window.cv.Mat(3, 1, window.cv.CV_64F);let ret_val = window.cv.solvePnP(modelPoints,imagePoints,cameraMatrix,distCoeffs,rvec,tvec,false,window.cv.SOLVEPNP_ITERATIVE // flags);// console.log("-------ret_val--------");// console.log(ret_val);// console.log("-------rvecs--------");// console.log("rvecs.data64F", rvec.data64F);// console.log("tvecs.data64F", tvec.data64F);var rtn = getEulerAngle(rvec);var pitch = rtn[0]; // 俯仰角var yaw = rtn[1]; // 水平角var roll = rtn[2]; // 翻滚角// console.log("pitch:", pitch, "yaw:", yaw, "roll:", roll);

cv.solvePnP介绍

在计算机视觉领域,解决摄像头姿态估计(Camera Pose Estimation)问题是一项关键任务。摄像头姿态估计可以用于许多应用,例如增强现实、目标跟踪和三维重建等。OpenCV是一个广泛使用的开源计算机视觉库,其中的cv.solvePnP方法是用于解决摄像头姿态估计问题的重要工具。

cv.solvePnP方法是OpenCV库中的一个函数,用于估计摄像头的姿态。该方法可以通过已知的物体三维坐标和对应的图像中的二维坐标来计算摄像头的姿态。姿态包括摄像头的旋转和平移。

cv.solvePnP原理

cv.solvePnP方法的原理基于解决一种称为PnP问题(Perspective-n-Point Problem)的几何计算。该问题旨在通过已知的三维点和它们在图像中的投影来计算摄像头的姿态。具体来说,该方法利用了摄像头的投影模型和三维-二维点对之间的几何关系。

在解决PnP问题时,cv.solvePnP方法通常使用一种称为迭代最小化重投影误差(Iterative Minimization of Reprojection Error)的技术。该技术通过最小化实际观测到的图像点和由估计的摄像头姿态计算得到的投影点之间的误差来优化姿态估计。

cv.solvePnP方法在许多计算机视觉应用中都有广泛的应用,其中包括但不限于:
增强现实(AR):用于将虚拟对象准确地叠加到实际世界中。
目标跟踪:用于追踪目标物体的位置和姿态。
三维重建:用于从多个视角的图像中重建三维场景。

运行代码查看效果

npm i安装依赖
npm start运行代码
请添加图片描述

3.绘制姿态示意直线

添加canvas元素

请添加图片描述

计算姿态直线坐标并绘制

相关代码内容如下:

var noseEndPoint2D = new window.cv.Mat(1, 2, window.cv.CV_64F);var jacobian = new window.cv.Mat(imagePoints.rows * 2,13,window.cv.CV_64F);window.cv.projectPoints(window.cv.matFromArray(1, 3, window.cv.CV_64F, [0.0, 0.0, 1000.0]),rvec,tvec,cameraMatrix,distCoeffs,noseEndPoint2D,jacobian);// console.log(noseEndPoint2D);// 绘制线段,连接鼻尖和其它点var p1 = new window.cv.Point(Math.round(imagePoints.data32F[0]),Math.round(imagePoints.data32F[1]));var p2 = new window.cv.Point(Math.round(noseEndPoint2D.data64F[0]),Math.round(noseEndPoint2D.data64F[1]));var zeroMat = window.cv.Mat.zeros(inputResolution.height,inputResolution.width,window.cv.CV_8U);// console.log("p1", p1.x, p1.y);// console.log("p2", p2.x, p2.y);window.cv.line(zeroMat, p1, p2, new window.cv.Scalar(255, 0, 0), 2);window.cv.imshow("cv", zeroMat);

最终的效果如下
请添加图片描述


总结

感谢您看到这里,本文介绍了如何结合tensorflow.js 和 opencv.js通过面部特征点估算脸部姿态并绘制示意图,希望对您有所帮助,如果文章中存在任何问题、疏漏,或者您对文章有任何建议,请在评论区提出。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/301886.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

element-ui drawer 组件源码分享

今日简单分享 drawer 组件的源码实现,从以下五个方面来分享: 1、drawer 组件页面结构 2、drawer 组件属性 3、drawer 组件 slot 4、drawer 组件方法 5、drawer 组件事件 一、drawer 组件页面结构 二、drawer 组件属性 2.1 append-to-body 属性&am…

政安晨:【Keras机器学习实践要点】(二十一)—— MobileViT:基于变换器的移动友好图像分类模型

目录 简介 导入 超参数 MobileViT 实用程序 政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras机器学习实战 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正! …

STC89C52学习笔记(六)

STC89C52学习笔记(六) 综述:本文讲述了51单片机的定时器和中断,还讲述了如何初始化定时器、编写中断服务函数和完成定时器控制LED闪烁。 一、定时器 1. 作用 ①用于计时 ②替代长时间的Delay。因为在Delay下,单片…

php站长在线工具箱源码优化版

环境要求 PHP > 7.4MySQL > 5.6fileinfo扩展使用Redis缓存需安装Redis扩展 源码下载地址:php站长在线工具箱源码优化版.zip

stm32GPO的相关操作

GPIO的使用 1.GPIO八种工作模式1.1 上拉输入1.2 下拉输入1.3 浮空输入1.4 模拟输入1.5 推挽输出1.6 开漏输出1.7 复用推挽输出1.8 复用开漏输出 2.相关寄存器2.1 寄存器配置IO 3.相关库函数 1.GPIO八种工作模式 保护二极管的作用:用来保护IO,一般情况IO的…

【React】Ant Design社区扩展库之分割面板:react-resizable-panels

主角:react-resizable-panels 简介:来之Ant Design官方文档社区精选组件 1、效果 2、环境 react-resizable-panels: ^2.0.16next: 14.1.3react: ^18 3、安装 # npm npm install react-resizable-panels# yarn yarn add react-resizable-panels# pnpm …

AI编程005/ 逆向生成mysql的建表语句

1/ 通过insert into 语句生成建表语句 有些时候我们能获取到表的insert语句,但是没有表结构。我们可以借助AI工具,让其逆向生成mysql的建表语句。 提示词如下: 根据下面的SQL语句,逆向生存mysql的建表语句,每个字段…

文心一言上线声音定制功能;通义千问开源模型;openAI又侵权?

文心一言上线定制专属声音功能 百度旗下 AI 聊天机器人文心一言上线新功能,用户录音一句话,即可定制声音。 使用这项功能需要使用文心一言 App。在创建智能体中,点击创建自己的声音,朗读系统提示的一句话,等候几秒钟时…

【大数据】大数据概论与Hadoop

目录 1.大数据概述 1.1.大数据的概念 1.2.大数据的应用场景 1.3.大数据的关键技术 1.4.大数据的计算模式 1.5.大数据和云计算的关系 1.6.物联网 2.Hadoop 2.1.核心架构 2.2.版本演进 2.3.生态圈的全量结构 1.大数据概述 1.1.大数据的概念 大数据即字面意思&#x…

网络工程师笔记18(关于网络的一些基本知识)

网络的分类 介绍计算机网络的基本概念,这一章最主要的内容是计算机网络的体系结构-ISO 开放系统互连参考模型,其中的基本概念,例如协议实体、协议数据单元,服务数据单元、面向连接的服务和无连接的服务、服务原语、服务访问点、相…

Vscode 中调试Django程序

调试介绍: ​​​​​​​Explore the debugger Debug/调试 可以让我们在特定的代码行上暂停程序的运行。当程序暂停时,我们可以查看变量的数值,在“Debug控制台”中运行代码,或利用“Debug”工具提供的其他功能。启动Debugger/调试器会自动…

迭代器模式

前言 迭代器模式就是分离了集合对象的遍历行为,抽象出一个迭代器类来负责,这样既可以做到不暴露集合的内部结构,又可让外部代码透明地访问集合内部的数据。 迭代器模式在访问数组、集合、列表等数据时,尤其是数据库数据操作时&am…

PSO-SVM,基于PSO粒子群算法优化SVM支持向量机回归预测(多输入单输出)-附代码

PSO-SVM是一种结合了粒子群优化(Particle Swarm Optimization, PSO)算法和支持向量机(Support Vector Machine, SVM)的方法,用于回归预测问题。下面我将解释PSO-SVM的原理: 1、支持向量机(SVM&a…

系统架构评估_3.ATAM方法

架构权衡分析方法(Architecture Tradeoff Analysis Method,ATAM)是在SAAM的基础发展起来的,主要针对性能、实用性、安全性和可修改性,在系统开发之前,对这些质量属性进行评价和折中。 (1&#x…

10倍提效!用ChatGPT编写系统功能文档。。。

系统功能文档是一种描述软件系统功能和操作方式的文档。它让开发团队、测试人员、项目管理者、客户和最终用户对系统行为有清晰、全面的了解。 通过ChatGPT,我们能让编写系统功能文档的效率提升10倍以上。 ​《Leetcode算法刷题宝典》一位阿里P8大佬总结的刷题笔记…

计算机网络-TCP连接建立阶段错误应对机制

错误现象 丢包 网络问题:网络不稳定可能导致丢包,例如信号弱或干扰强。带宽限制可能导致路由器或交换机丢弃包,尤其是在高流量时段。网络拥塞时,多个数据流竞争有限的资源,也可能导致丢包。缓冲区溢出:TC…

Astra深度相机在Ubuntu18.04系统下实现相机标定

问题: 当使用Astra相机的启动的指令启动相机后,使用rviz查看相机所发布的rgb数据时,在终端会出现如下的提示信息: Camera calibration file /home/car/.ros/camera_info/rgb_Astra_Orbbec.yaml not found. Camera calibration fil…

(学习日记)2024.04.11:UCOSIII第三十九节:软件定时器

写在前面: 由于时间的不足与学习的碎片化,写博客变得有些奢侈。 但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。 既然如此 不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录&a…

nacos分布式程序开发实例

1.通过windows docker desktop 完成 nacos 的安装/启动/配置 (1)先安装docker desktop docker-toolbox-windows-docker-for-windows-stable安装包下载_开源镜像站-阿里云 (2)配置docker 国内镜像源 Docker 镜像加速 | 菜鸟教程…

携程旅行 abtest

声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!wx a15018601872 本文章…