ROS摄像机标定

文章目录

  • 一、环境准备
  • 二、摄像头标定
    • 2.1 为什么要标定
    • 2.2 标定前准备
      • 2.2.1 标定板
      • 2.2.2 摄像头调焦
    • 2.3 开始标定
    • 2.4 测试标定结果
  • 总结
  • 参考资料

一、环境准备

安装usb_cam相机驱动
sudo apt-get install ros-noetic-usb-cam
在这里插入图片描述

安装标定功能包
sudo apt-get install ros-noetic-camera-calibration
在这里插入图片描述
usb_cam提供了一个launch文件,可以直接roslaunch运行,打开usb_cam_node 和 image_view节点。launch文件在/opt/ros/noetic/share/usb_cam/launch文件夹下。直接在这个目录打开bash然后运行。执行这个命令:
roslaunch usb_cam usb_cam-test.launch
在这里插入图片描述
launch文件内容如下:

<launch><node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" ><param name="video_device" value="/dev/video0" /><param name="image_width" value="640" /><param name="image_height" value="480" /><param name="pixel_format" value="yuyv" /><param name="color_format" value="yuv422p" /><param name="camera_frame_id" value="usb_cam" /><param name="io_method" value="mmap"/></node><node name="image_view" pkg="image_view" type="image_view" respawn="false" output="screen"><remap from="image" to="/usb_cam/image_raw"/><param name="autosize" value="true" /></node>
</launch>

二、摄像头标定

2.1 为什么要标定

普通相机成像误差的主要来源有两部分,第一是相机感光元件制造产生的误差,比如成
像单元不是正方形、歪斜等;第二是镜头制造和安装产生的误差,镜头一般存在非线性的径
向畸变。
在对相机成像和三维空间中位置关系对应比较严格的场合(例如尺寸测量、视觉 SLAM等)就需要准确的像素和物体尺寸换算参数,这参数必须通过实验与计算才能得到,求解参数的过程就称之为相机标定。

2.2 标定前准备

2.2.1 标定板

在执行摄像头标定前,需要先准备一块标定板。
标定板有两种获得方法,第一种是采购成品的标定板,A4纸大小的标定板通常价格在300~400的样子。

如果不想采购,可以使用打印机将下面的文件按照1:1打印在A4纸上,然后贴在一块纯平的版上,例如亚克力板。

打印的标定板缺点在于,第一打印机的精度有限,边缘可能会产生模糊,另外就是在粘贴时很难做到极高的平整度,这两项都会对标定结果产生一定的影响,但是优点时便宜易得。

2.2.2 摄像头调焦

标定只针对手动对焦的相机,自动对焦的相机由于焦距变化,难以形成固定的标定参数。
相机在标定前,需要调整好焦距(拧镜头),使成像清晰,并将当前焦距固定住,防止焦距产生变化。

2.3 开始标定

准备标定板,可以使用这个网站生成标准的棋盘标定pdf,可以截图到平板上当成一块板子。

开始标定,bash中输入:
rosrun camera_calibration cameracalibrator.py --size 11x8 --square 0.02 image:=/usb_cam/image_raw
--size是指这个标定板的内角点数量详细说明戳这
--square是指每个小正方形的边长。
运行之后会出现下面这个窗口,然后用你的标定板缓慢各式各样的移动,会发现右边那几个进度条在变化,你要做的就是让这些血条变绿。X表示左右移动,Y表示上下,Size表示远近,Skew表示倾斜
在这里插入图片描述
在这里插入图片描述
全部绿了之后,会发现CALIBRATE按钮变颜色,然后点击,开始无尽的等待。直到控制台出现你的标定信息,就标定好了。如下图:
在这里插入图片描述
测试标定结果,再把标定板拿到镜头,右侧出现了一个数据,叫线性误差,通常这个值小于0.1或者显示acc都可以认为标定结果可用
在这里插入图片描述
除此之外,点击SAVE按钮后在/tmp目录下,出现了一个压缩包,这个压缩包存放了标定结果和图片。其中的.yaml就是标定结果,后续会使用。
在这里插入图片描述
在这里插入图片描述

2.4 测试标定结果

打开你的ros工作目录,在src下创建一个功能包,在这个功能包下创建config和launch目录,config存放刚才的标定结果yaml文件,launch目录存放launch文件,来运行节点。
launch文件内容如下:

<launch><node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" ><param name="video_device" value="/dev/video0" /><param name="image_width" value="640" /><param name="image_height" value="480" /><param name="pixel_format" value="yuyv" /><param name="camera_frame_id" value="usb_cam" /><param name="io_method" value="mmap"/><param name="camera_name" value="my_camera"/><param name="camera_info_url" type="string" value="file://$(find bingda_tutorials)/config/ost.yaml"/></node>
</launch>

重要的是后面两个参数,一个是摄像头名称,你自定义,一个是info_url,写你的yaml文件路径
接下来launch一下:
在这里插入图片描述
使用echo将camera_info话题输出,可以看到摄像头的标定参数已经加载在话题中了
rostopic echo /usb_cam/camera_info
在这里插入图片描述
矫正图像
如果需要使用标定参数矫正图像,可以使用image_proc这个功能包
首先通过apt方式安装
在这里插入图片描述
安装完成后运行它,这里加入ROS_NAMESPACE是由于usb_cam这个功能包中发布的话题都带有了/usb_cam这个命名空间,所以为了保证图像和摄像头参数话题能正常的被image_proc节点接收需要给它加上命名空间/usb_cam
ROS_NAMESPACE=usb_cam rosrun image_proc image_proc
再开启两个rqt_image_view,直接终端输入就可以。
左边是校正了的,右边是原生图像。看不出什么区别,广角下就会比较明显
在这里插入图片描述

总结

在本实验中,操作了在Ubuntu 20.04上安装ROS并使用相机标定包对摄像头进行标定,了解了具体操作过程。通过进行标定,获取摄像头的内部参数和畸变系数,提高测量精度。

参考资料

让他火!!!神级教程

标定材料
标定教程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/315493.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp获取当前位置及检测授权状态

uniapp获取当前位置及检测授权定位权限 文章目录 uniapp获取当前位置及检测授权定位权限效果图创建js文件permission.jslocation.js 使用 效果图 Android设备 点击 “设置”&#xff0c;跳转应用信息&#xff0c;打开“权限即可”&#xff1b; 创建js文件 permission.js 新建…

一觉醒来 AI科技圈发生的大小事儿 04月27日

⏩阿里智能体“组装工厂”开源&#xff01;0经验搞定上万Agent并发 阿里巴巴通义实验室开源了多智能体编程框架与开发平台AgentScope&#xff0c;旨在提供高易用的编程体验、稳定可靠的运行时保障&#xff0c;并且为开发者提供了分布式和多模态的技术支持。AgentScope提供了拖…

哈夫曼编码---一种无损数据压缩算法

哈夫曼编码是一种无损数据压缩算法&#xff0c;该算法在数据压缩&#xff0c;存储和网络传输等领域广泛引用&#xff0c;对互联网的发展也产生了深远的影响。 大家熟知的数据无损压缩软件&#xff0c;如WinRAR&#xff0c;gzip&#xff0c;bzip&#xff0c;lzw&#xff0c;7-z…

Linux操作系统基础开发工具的使用——vim,gcc/g++,MakeFile,gdb,yum

目录 一&#xff0c;vim&#xff08;Linux常用文本编辑器&#xff09; 1.1 关于vim 1.2 vim的三种常用模式 1.3 各种模式的切换&#xff08;一图览&#xff09; 1.4 vim命令模式各命令集合 1.5 vim底行模式各命令集合 1.6 vim配置 二&#xff0c;gcc/g&#xff08;Linu…

【鸿蒙应用】理财App

目录 第一节项目讲解项目介绍 第二节&#xff1a;项目创建登录静态框架编写登录页面设稿新建项目控制台添加项目Login页面封装标题组件 第三节&#xff1a;登录页静态表单编写第四节—内容页架构分析底部栏组件第五节—底部栏组件切换第六节&#xff1a;首页静态页编写第七节&a…

STM32与OLED显示屏通信(四针脚和七阵脚)

系列文章目录 STM32单片机系列专栏 C语言术语和结构总结专栏 文章目录 1. 单片机调试 2. OLED简介 3. 接线 4. OLED驱动函数 4.1 四针脚版本 OLED.c OLED.h OLED_Font.h 4.2 七针脚版本 引脚连接 OLED.c OLED.h OLED_Font.h 5. 主函数 工程文件模板 1. 单片机…

Spark和Hadoop的安装

实验内容和要求 1&#xff0e;安装Hadoop和Spark 进入Linux系统&#xff0c;完成Hadoop伪分布式模式的安装。完成Hadoop的安装以后&#xff0c;再安装Spark&#xff08;Local模式&#xff09;。 2&#xff0e;HDFS常用操作 使用hadoop用户名登录进入Linux系统&#xff0c;启动…

CSS 之 transition过渡动画

一、简介 ​ CSS 制作 Web 动画有两种方式&#xff1a; 帧动画&#xff08;Keyframe Animation&#xff09;和过渡动画&#xff08;Transition Animation&#xff09;。针对不同的业务场景中&#xff0c;我们应该选择不同的动画方式&#xff0c;通常来说&#xff1a;对于交互元…

从虚拟化走向云原生,红帽OpenShift“一手托两家”

汽车行业已经迈入“软件定义汽车”的新时代。吉利汽车很清醒地意识到&#xff0c;只有通过云原生技术和数字化转型&#xff0c;才能巩固其作为中国领先汽车制造商的地位。 和很多传统企业一样&#xff0c;吉利汽车在走向云原生的过程中也经历了稳态业务与敏态业务并存带来的前所…

微信第三方开放平台,实现代公众号保留排版样式和图片发布文章

大家好&#xff0c;我是小悟 要想实现代公众号发布文章的功能&#xff0c;就得接入富文本编辑器&#xff0c;市面上富文本编辑器有很多&#xff0c;轻量的、重量的都有。 从开发者的角度&#xff0c;自然把轻量作为第一选择&#xff0c;因为好对接&#xff0c;怎么方便怎么来…

【Python】爬虫-基础入门

目录 一、什么是爬虫 二、爬虫的主要用途 三、学会爬虫需要掌握的技能 四、爬虫使用的语言 五、编写爬虫需要的库&#xff0c;以python为例 六、爬虫示例-python 示例一 示例二 示例三 一、什么是爬虫 爬虫&#xff0c;又称网络爬虫或网页爬虫&#xff0c;是一种用来自…

Windows电脑中护眼(夜间)模式的开启异常

我的电脑是联想小新16pro&#xff0c;Windows11版本。之前一直可以正常使用夜间模式&#xff0c;但是经过一次电脑的版本更新之后&#xff0c;我重启电脑发现我的夜间模式不能使用了。明明显示开启状态&#xff0c;但是却不能使用&#xff0c;电脑还是无法显示夜间模式。 询问…

Drive Scope for Mac:硬盘健康监测分析工具

Drive Scope for Mac是一款专为Mac用户设计的硬盘健康监测与分析工具&#xff0c;致力于保障用户的数据安全。这款软件功能强大且操作简便&#xff0c;能够实时检测硬盘的各项指标&#xff0c;帮助用户及时发现并解决潜在问题。 Drive Scope for Mac 1.2.23注册激活版下载 Driv…

图像处理:乘法滤波器(Multiplying Filter)和逆FFT位移

一、乘法滤波器&#xff08;Multiplying Filter&#xff09; 乘法滤波器是一种以像素值为权重的滤波器&#xff0c;它通过将滤波器的权重与图像的像素值相乘&#xff0c;来获得滤波后的像素值。具体地&#xff0c;假设乘法滤波器的权重为h(i,j)&#xff0c;图像的像素值为f(m,…

基于CANoe从零创建以太网诊断工程(2)—— TCP/IP Stack 配置的三种选项

&#x1f345; 我是蚂蚁小兵&#xff0c;专注于车载诊断领域&#xff0c;尤其擅长于对CANoe工具的使用&#x1f345; 寻找组织 &#xff0c;答疑解惑&#xff0c;摸鱼聊天&#xff0c;博客源码&#xff0c;点击加入&#x1f449;【相亲相爱一家人】&#x1f345; 玩转CANoe&…

经典的目标检测算法有哪些?

一、经典的目标检测算法有哪些&#xff1f; 目标检测算法根据其处理流程可以分为两大类&#xff1a;One-Stage&#xff08;单阶段&#xff09;算法和Two-Stage&#xff08;两阶段&#xff09;算法。以下是一些经典的目标检测算法&#xff1a; 单阶段算法: YOLO (You Only Loo…

前端三大件速成 01 HTML

文章目录 一、前端基础知识二、标签1、什么是标签2、标签的属性3、常用标签&#xff08;1&#xff09;声明&#xff08;2&#xff09;注释&#xff08;3&#xff09;html 根标签&#xff08;3&#xff09;head标签&#xff08;4&#xff09;body标签 三、特殊字符四、其他标签1…

xhEditor实现WORD粘贴图片自动上传

1.下载示例&#xff1a; 从官网下载 http://www.ncmem.com/webapp/wordpaster/versions.aspx 从gitee中下载 https://gitee.com/xproer/wordpaster-php-xheditor1x 2.将插件目录复制到项目中 3.引入插件文件 定义插件图标 初始化插件&#xff0c;在工具栏中添加插件按钮 效果…

Kafka源码分析(四) - Server端-请求处理框架

系列文章目录 Kafka源码分析-目录 一. 总体结构 先给一张概览图&#xff1a; 服务端请求处理过程涉及到两个模块&#xff1a;kafka.network和kafka.server。 1.1 kafka.network 该包是kafka底层模块&#xff0c;提供了服务端NIO通信能力基础。 有4个核心类&#xff1a;…

PotatoPie 4.0 实验教程(24) —— FPGA实现摄像头图像中心差分变换

为什么要对图像进行中心差分变换&#xff1f; 对图像进行中心差分变换的主要目的是计算图像中每个像素点的梯度。梯度在图像处理中是一个非常重要的概念&#xff0c;它可以用来描述图像中灰度变化的快慢和方向&#xff0c;常用于边缘检测、特征提取和图像增强等任务中。 具体…