中科院突破:TalkingGaussian技术实现3D人脸动态无失真,高效同步嘴唇运动!

DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息!

引言:探索高质量3D对话头像的新方法

在数字媒体和虚拟互动领域,高质量的3D对话头像技术正变得日益重要。这种技术能够在虚拟现实、电影制作、视频会议以及各种人机交互场景中找到广泛应用。尽管传统的基于神经辐射场(NeRF)的方法在生成高保真度的3D对话头像方面取得了一定的成功,但这些方法往往面临着成本高昂和面部特征易扭曲的问题。为了解决这些问题,本文提出了一种新的基于3D高斯投影(3DGS)的变形框架——TalkingGaussian,它通过对持久头部结构进行变形来生成对话头像,从而显著提高了面部动作的精确度和图像的整体质量。

论文标题: TalkingGaussian: Structure-Persistent 3D Talking Head Synthesis via Gaussian Splatting
在这里插入图片描述

机构:

  1. School of Computer Science and Engineering, State Key Laboratory of Complex & Critical Software Environment, Jiangxi Research Institute, Beihang University
  2. Institute of Semiconductors, Chinese Academy of Sciences
  3. School of Information and Communication Technology, Griffith University
  4. RIKEN AIP
  5. The University of Tokyo

论文链接: https://arxiv.org/pdf/2404.15264.pdf

项目地址: 未提供

通过引入3DGS和面部-口部解耦技术,TalkingGaussian不仅能够在不牺牲动态表现力的前提下,提供更稳定和准确的头部结构,还能够有效避免传统方法中常见的面部特征扭曲问题。此外,该方法还采用了增量采样策略,优化了变形学习过程,进一步提升了模型的学习效率和生成头像的质量。通过广泛的实验验证,TalkingGaussian在客观评估和人类判断中均优于现有的最先进方法,显示出其在实际应用中的巨大潜力。

3D高斯喷溅技术简介

3D高斯喷溅(3D Gaussian Splatting, 3DGS) 是一种用于表达三维空间信息的技术,通过一组3D高斯原始数据来实现。这些高斯原始数据包括中心位置、缩放因子、旋转四元数、不透明度和颜色特征。在渲染过程中,根据相机模型信息,这些高斯原始数据被用来计算观察视图下的像素颜色。

3DGS的核心优势在于其明确的空间表达和优化策略。通过梯度下降法优化高斯原始数据的参数,结合密集化策略控制原始数据的增长,并剪除不必要的数据,从而实现高效的颜色监督。这种方法继承了颜色监督的优化策略,有效提高了渲染效率和质量。

TalkingGaussian框架详解

TalkingGaussian 是一个基于3DGS的变形驱动的talking head合成框架。该框架的核心思想是通过多个平滑的变形来表达复杂和细粒度的面部动作,简化学习任务,从而提高面部保真度和合成质量。

持久化高斯场(Persistent Gaussian Fields)

持久化高斯场保留了具有规范参数的持久化高斯原始数据。这一模块最初通过静态3DGS初始化,随后与基于网格的运动场(Grid-based Motion Fields)共同进行优化。

基于网格的运动场(Grid-based Motion Fields)

尽管持久化高斯场能有效代表正确的3D头部结构,但由于其完全显式的空间结构,缺乏区域位置编码。考虑到大多数面部动作在区域上是平滑和连续的,我们采用了一个高效且富有表现力的三平面哈希编码器和MLP解码器来构建连续的变形空间。
在这里插入图片描述

面部-口内分解(Face-Mouth Decomposition)

尽管基于网格的运动场可以预测任意位置的点状变形,但这种表示仍然存在由面部和口内运动不一致引起的粒度问题。为了解决这一问题,我们在3D空间中将这两个区域分解,并构建两个单独的优化分支。

训练细节

我们保留了基本的3DGS优化策略来训练我们的框架。整个过程分为三个阶段,前两个阶段分别应用于两个分支,最后一个阶段用于融合。在动态学习阶段,我们将运动场的预测变形加入训练,并通过3DGS光栅化器渲染输出图像。最后,进行颜色微调阶段,以更好地融合头部和口内分支。

通过这种方法,TalkingGaussian框架能够有效地解决由不准确的外观预测引起的面部扭曲问题,生成高质量、高保真的talking head视频。

面部与口内运动的分解

在TalkingGaussian框架中,我们提出了一个面部与口内运动的分解模块,以解决这两个区域在动态表达时的运动不一致问题。传统的方法中,由于面部和口内区域的运动在空间上非常接近但并不总是同步进行,这种运动的不一致性常常导致在单一的运动场中相互干扰,从而影响了整体的动态表现和静态结构的重建质量。

为了解决这一问题,我们在3D空间中对这两个区域进行了分解,并为每个区域构建了独立的优化分支。具体来说,我们首先使用现成的面部解析模型获取2D空间中的口内区域语义掩模。然后,我们将口内区域的掩膜图像和剩余的表面区域(包括面部、头发和其他头部部分)分别用于训练两个独立的可变形高斯场,作为我们框架的两个分支。

面部分支:面部分支主要负责拟合除口内运动外的所有面部运动。在这个分支中,我们采用了区域注意力机制来促进由音频特征和上半脸表情特征驱动的条件变形的学习。为了完全解耦这两种条件,上半脸表情特征由7个与口部无关的动作单元组成,通过区域注意力机制中的注意力向量与音频和表情特征进行运算,从而计算出每个位置的区域感知特征。

口内分支:口内分支则代表音频驱动的动态口内区域。考虑到口内运动相对简单,并且仅由音频驱动,我们在这个分支中使用了一个轻量级的可变形高斯场。特别地,我们仅预测由音频特征条件化的第i个原始的平移变化。

通过这种面部与口内的分解,我们的方法不仅在动态表现上有了显著提升,也在静态结构的重建质量上得到了改善。最终的合成头像是通过将两个分支渲染的面部和口内图像融合而成。根据物理结构,我们假设口内分支的渲染结果位于面部分支的后面,从而实现了更高保真度的合成效果。

实验设置与基线比较

在我们的实验中,我们收集了四个高清晰度的说话视频剪辑,包括三个男性肖像和一个女性肖像,用于构建视频数据集。这些视频剪辑平均长度约为6500帧,帧率为25 FPS,其中三个(“May”,“Macron”和“Lieu”)被裁剪并调整大小为512×512,一个(“Obama”)调整为450×450。
在这里插入图片描述

在实验中,我们主要将我们的方法与最相关的NeRF基方法(如AD-NeRF、DFRF、RAD-NeRF、GeneFace和ER-NeRF)进行比较,这些方法通过使用说话视频训练的个人特定辐射场来渲染说话头像。此外,我们还将我们的方法与最先进的2D生成模型(如Wav2Lip、IP-LAP和DINet)进行了比较,这些模型不需要个人特定的训练。

在所有实验中,我们的方法在静态图像质量、动态运动质量和效率方面均表现最佳。特别是在动态质量方面,我们的方法在所有指标上都优于所有NeRF方法。值得注意的是,TalkingGaussian在Sync-C得分方面甚至高于生成方法IP-LAP和DINet,展示了我们方法的强大建模能力。尽管Wav2Lip在Sync-C得分最高,但其在保持个人说话风格方面的不足导致了较差的AUE-L和LMD得分。此外,由于3DGS带来的效率提升,我们的方法在所有基线中达到了最快的训练和推理速度。
在这里插入图片描述

定量评估与用户研究

1. 定量评估

在定量评估方面,我们采用了多种度量标准来评估TalkingGaussian方法在合成高质量、高保真度的3D说话头像方面的表现。这些度量标准包括PSNR、LPIPS和SSIM,用于评估图像质量;以及Sync-C和Sync-D,用于评估唇部同步的准确性。此外,我们还使用了动作单元误差(AUE-U和AUE-L)来分别评估上半脸和嘴部动作的准确性。

在自我重建设置中,TalkingGaussian在所有指标上均表现优异,尤其是在LPIPS和SSIM上,显示出其在细节渲染和结构保真度上的优势。此外,我们的方法在训练和推理速度上也是所有对比方法中最快的,显示了其高效性。

在唇部同步设置中,尽管面临跨性别和跨语言的挑战,TalkingGaussian仍然展示了出色的泛化性能,特别是在处理不同性别的音频输入时,表现出了较高的鲁棒性和适应性。

2. 用户研究

为了更好地评估TalkingGaussian在实际应用中的表现,我们进行了用户研究。在这项研究中,我们邀请了16名参与者对由8种不同方法生成的32个说话头像视频进行评分,从唇同步准确性、视频真实感和图像质量三个方面进行评价。

结果显示,TalkingGaussian在所有三个方面均获得了最高评分,验证了其在生成高质量说话头像视频方面的潜力和实用性。
在这里插入图片描述

讨论与未来工作

TalkingGaussian通过采用3D高斯飞溅技术和面部-口内解构模块,成功地解决了以往基于NeRF方法在动态区域产生的面部特征扭曲问题。通过将动态说话头部的表示简化为纯粹的形变,我们的方法不仅提高了面部保真度,还改善了唇部同步的精确度。

尽管我们的方法在多个方面表现优异,但仍存在一些限制和未来的改进方向。例如,尽管增量采样策略提高了优化过程的稳定性,但在3DGS的密集化操作中仍可能偶尔出现噪声原语,这有时会影响图像质量。未来,我们计划引入更多的约束来更好地控制原语的生长。

此外,尽管面部和口内分支通过音频特征进行了对齐,但这种连接在某些跨域情况下可能不够紧密。为了解决这个问题,我们将探索更好的两部分间的感知机制,以增强未来方法的鲁棒性。

总之,TalkingGaussian为高质量的3D说话头像合成提供了一种有效的解决方案,为数字媒体产业的发展提供了新的技术支持。同时,我们也呼吁负责任地使用这项技术,以防止其被用于恶意目的。

结论

本文提出了一种新颖的基于变形的框架——TalkingGaussian,用于高质量的3D说话头部合成。通过维持一个持久的头部结构并采用高斯溅射技术,我们的方法在合成更精确、清晰的说话头部方面超越了以往的方法。通过将面部和口内的动作分解为不同的空间,TalkingGaussian有效地解决了由于快速变化的外观预测不准确而导致的“面部扭曲”问题,实现了在合成真实和准确的说话头部视频方面的卓越性能。

1. 技术优势和应用潜力

TalkingGaussian通过3D高斯溅射(3DGS)技术,保持了头部结构的持久性,并通过变形而非外观修改来表示面部动作,这一策略显著提高了面部细节的准确性和动态表现的自然性。此外,我们的方法在多个基准测试中显示出优越的视觉质量和效率,尤其是在唇部同步和面部保真度方面,均优于当前最先进的方法。

2. 道德考量和使用建议

尽管TalkingGaussian为数字媒体行业的发展提供了强大的技术支持,但我们也必须警惕其潜在的滥用风险。为防止技术被用于制造虚假信息,我们建议在使用此技术时确保所有数据主体的明确同意,并在合成产品中明确披露使用了深度伪造技术。此外,我们将致力于开发深度伪造检测技术,以促进该技术的负责任使用。

3. 限制与未来工作

虽然TalkingGaussian在多个方面表现出色,但仍存在一些限制。例如,3DGS的密集化操作有时可能导致噪声原始图形的随机出现,尽管通过增量采样策略可以在一定程度上缓解这一问题。未来,我们计划引入更多约束来更好地控制原始图形的生长,以及增强面部和口内分支之间的连接,提高模型在跨域输入下的鲁棒性和准确性。

总之,TalkingGaussian框架的提出,不仅推动了3D说话头部合成技术的发展,也为相关领域的研究和应用提供了新的思路和工具。我们期待该技术在未来能够在更广泛的应用场景中展现其价值,同时也呼吁社会各界共同努力,确保新技术的健康发展和负责任的使用。

关注DeepVisionary 了解更多深度学习前沿科技信息&顶会论文分享!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/319682.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

银河麒麟桌面版开机后网络无法自动链接 麒麟系统开机没有连接ens33

1.每次虚拟机开机启动麒麟操作系统,都要输入账号,密码。 进入点击这个ens33 内网才连接 2. 如何开机就脸上呢? 2.1. 进入 cd /etc/sysconfig/network-scripts 2.2 修改参数 onbootyes 改为yes 2.3 重启即可 a. 直接重启机器查看是否正常&…

docker原理

Docker原理 在前面我们学习了Docker,接下来我们探究一下Docker的底层技术原理 Linux 命名空间(namespace)、控制组(cgroups)和 联合文件系统(UnionFS) 三大技术支撑了目前 Docker 的实现&…

Unity SteamVR入门

概述 VR项目现在在当前已经是非常热门的技术,可以给玩家身临其境的感觉,接下来让我们学习这部分的内容吧! SteamVR Input SteamVR绑定流程,在Windows窗口的点击SteamVR-input,图1,在这里可以选择你需要绑定…

2024五一杯数学建模C题思路分享 - 煤矿深部开采冲击地压危险预测

文章目录 1 赛题选题分析 2 解题思路2.1 问题重述2.2 第一问完整思路2.2 二、三问思路更新 3 最新思路更新 1 赛题 C题 煤矿深部开采冲击地压危险预测 煤炭是中国的主要能源和重要的工业原料。然而,随着开采深度的增加,地应力增大,井下煤岩动…

【Flask 系统教程 4】Jinjia2模版和语法

Jinjia2 模板 模板的介绍 Jinja2 是一种现代的、设计优雅的模板引擎,它是 Python 的一部分,由 Armin Ronacher 开发。Jinja2 允许你在 HTML 文档中嵌入 Python 代码,以及使用变量、控制结构和过滤器来动态生成内容。它的语法简洁清晰&#…

kerberos-hive-dbeaver问题总结

一、kerberos安装windows客户端 1、官方下载地址 http://web.mit.edu/kerberos/dist/ 2、环境变量配置 下载msi安装包,无需重启计算机,调整环境变量在jdk的前面,尽量靠前,因为jdk也带了kinit、klist等命令 C:\Program Files\…

【多模态大模型】AI对视频内容解析问答

文章目录 1. 项目背景2. 直接对视频进行解析进行AI问答:MiniGPT4-Video2.1 MiniGPT4-Video效果 3. 对视频抽帧为图片再进行AI问答3.1 视频抽帧3.2 图片AI问答3.2.1 阿里通义千问大模型 Qwen-vl-plus3.2.2 Moonshot 1. 项目背景 最近在做一个项目,需要使用AI技术对视…

Git常用(持续更新)

常用场景: 初始化: git config --global user.name "codelabs" git config --global user.email mycodelabs.com git init git remote add origin https://github.com/username/repository.git git pull origin master 提交: gi…

【Android学习】自定义文本框和输入监听

实现功能 以上代码可实现功能: 1 自定义文本框样式 2. 文本框触发形式转变 3. 文本框输入长度监听,达到最大长度关闭软键盘 4. password框触发检测phone框内容 1. drawable自定义形状 我创建了editor_focus.xml 和 editor_unfocus.xml,两者仅…

500行代码实现贪吃蛇(1)

文章目录 目录1. Win32 API 介绍1.1 Win32 API1.2 控制台程序(Console)1.3 控制台屏幕上的坐标COORD1.4 [GetStdHandle](https://learn.microsoft.com/zh-cn/windows/console/getstdhandle)1.5 [GetConsoleCursorInfo](https://learn.microsoft.com/zh-c…

2024年 Java 面试八股文——SpringBoot篇

目录 1. 什么是 Spring Boot? 2. 为什么要用SpringBoot 3. SpringBoot与SpringCloud 区别 4. Spring Boot 有哪些优点? 5. Spring Boot 的核心注解是哪个?它主要由哪几个注解组成的? 6. Spring Boot 支持哪些日志框架&#…

Flutter笔记:Widgets Easier组件库(4)使用按钮组

Flutter笔记 Widgets Easier组件库(4):使用按钮组 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress…

【小浩算法 BST与其验证】

BST与其验证 前言我的思路思路一 中序遍历判断数组无重复递增思路二 递归边界最大值最小值的传递 我的代码测试用例1测试用例2 前言 BST是二叉树一个经典应用,我们常常将其用于数据的查找以及构建平衡二叉树等。今天我所做的题目是验证一颗二叉树是否为二叉搜索树&…

机器学习-K近邻算法(KNN)

目录 什么是KNN算法 图解KNN基本算法 (1)k近邻算法中k的选取 (2)距离函数 (3)归一化处理 (4)概率kNN KNN算法的优缺点 优势 缺点 KNN算法总结 什么是KNN算法 k近邻算法&…

农作物害虫检测数据集VOC+YOLO格式18975张97类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):18975 标注数量(xml文件个数):18975 标注数量(txt文件个数):18975 标…

周三多《管理学原理》第3版/考研真题/章节练习题

普通高等教育“十一五”国家级规划教材《管理学原理》(第3版,周三多、陈传明、龙静编著,南京大学出版社)是我国高校广泛采用的管理学权威教材之一,也被众多高校(包括科研机构)指定为考研考博专业…

电脑技巧:推荐一款非常好用的媒体播放器PotPlayer

目录 一、 软件简介 二、功能介绍 2.1 格式兼容性强 2.2 高清播放与硬件加速 2.3 自定义皮肤与界面布局 2.4 多音轨切换与音效增强 2.5 字幕支持与编辑 2.6 视频截图与录像 2.7 网络流媒体播放 三、软件特色 四、使用技巧 五、总结 一、 软件简介 PotPlayer播放器 …

排序-八大排序FollowUp

FollowUp 1.插入排序 (1).直接插入排序 时间复杂度:最坏情况下:0(n^2) 最好情况下:0(n)当数据越有序 排序越快 适用于: 待排序序列 已经基本上趋于有序了! 空间复杂度:0(1) 稳定性:稳定的 public static void insertSort(int[] array){for (int i 1; i < array.length; i…

使用Android Studio 搭建AOSP FrameWork 源码阅读开发环境

文章目录 概述安装Android Studio编译源码使用Android Studio打开源码制作ipr文件直接编译成功后自动打开Android Studio 修改SystemUI验证开发环境 概述 我们都知道Android的系统源码量非常之大&#xff0c;大致有frameworka层源码&#xff0c;硬件层(HAL)源码&#xff0c;内…

能源监控新方案:IEC104转MQTT网关在新能源发电中的应用

需求背景 近些年&#xff0c;我国新能源产业快速发展&#xff0c;光伏、风电等新能源项目高速增长&#xff0c;新能源发电已经成为国家能源结构的重要组成部分。 打造数字化、智能化、信息化的电力物联网系统&#xff0c;实现光伏风电等新能源发电站的远程监控、远程维护是新能…