Elasticsearch集群聚合、集群搭建
- RestClient
- 查询所有
- 高亮
- 算分控制
- 数据聚合
- DSL实现Bucket聚合
- DSL实现Metrics聚合
- RestAPI实现聚合
- 拼音分词器
- 如何使用拼音分词器?
- 如何自定义分词器?
- 拼音分词器注意事项?
- 自动补全
- 数据同步
- 集群搭建
- ES集群结构
- 创建es集群
- 集群状态监控
- 创建索引库
- 1)利用kibana的DevTools创建索引库
- 2)利用cerebro创建索引库
- 查看分片效果
- ES集群中的节点角色
- ES脑裂
- ES集群的分布式存储
- ES集群的分布式查询
- ES集群的故障转移
RestClient
查询所有
void testMatchAll() throws IOException {//1.准备RequestSearchRequest request = new SearchRequest("hotel");//2.准备DSLrequest.source().query(QueryBuilders.matchAllQuery());//3.发送请求SearchResponse response = restClient.search(requ est , RequestOptions.DEFAULT);System.out.println(response);}
高亮
高亮API包括请求DSL构建和结果解析两部分。
构建:
request.source().highlighter(new HghlightBuilder().field("name")//是否需要与字段匹配.requireFieldMatch(false))
@Testpublic void testHighLight() throws IOException {//1 准备RequestSearchRequest request = new SearchRequest("hotel");//2 准备DSLrequest.source().query(QueryBuilders.matchQuery("name" , "如家"));//2.2 高亮request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));//3 发送请求SearchResponse response = restClient.search(request , RequestOptions.DEFAULT);//4 解析响应SearchHits searchHits = response.getHits();//5 获取总条数long total = searchHits.getTotalHits().value;//4.2 文档数组SearchHit[] hits = searchHits.getHits();//4.3 遍历for(SearchHit hit : hits){//获取文档sourceString json = hit.getSourceAsString();//反序列化HotelDoc hotelDoc = JSON.parseObject(json , HotelDoc.class);//获取高亮结果Map<String , HighlightField> highlightFields = hit.getHighlightFields();//根据字段名获取高亮结果HighlightField highlightField = hightlightFields.get("name");//获取高亮值String name = highlightField.getFragments()[0].string();//覆盖非高亮结果hotelDoc.setName(name);}}
-
所有搜索DSL的构建,记住一个API:
- SearchRequest的source()方法。
-
高亮结果解析是参考JSON结果,逐层解析
算分控制
FunctionScoreQueryBuilder functionScoreQuery = QueryBuilders.functionScoreQuery(//原始查询,相关性算分的查询boolQuery ,new FunctionSocreQueryBuilder.FilterFunctionBuilder[]{new FunctionScoreQueryBuilder.FilterFunctionBuilder(//过滤条件QueryBuilders.termQuery("isAd" , true),//算分函数ScoreFuntionBuilders.weightFactorFuntion(10))}
);
数据聚合
聚合的分类
聚合(aggregations)可以实现对文档数据的统计、分析、运算。聚合常见的有三类:
-
桶(Bucket)聚合:用来对文档做分组
- TermAggregation:按照文档字段值分组
- Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
-
度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求max、min、avg、sum等
-
管道(pipeline)聚合:其他聚合的结果为基础做聚合
什么是聚合?
- 聚合是对文档数据的统计、分析、计算
聚合的常见种类有哪些?
- Bucket:对文档数据分组,并统计每组数量
- Metric:对文档数据做计算,例如avg
- Pipeline:基于其他聚合结果再做聚合
参与聚合的字段类型必须是:
- keyword
- 数值
- 日期
- 布尔
DSL实现Bucket聚合
GET /hotel/_search
{"size":0, // 设置size为0,结果中不包含文档,只包含聚合结果"aggs":{ // 定义聚合"brandAgg":{ // 给聚合起个名字"terms":{ // 聚合的类型,按照品牌值聚合,所以选择term"field":"brand", // 参与聚合的字段"size":20 // 希望获取的聚合结果数量}}}
}
aggs代表聚合,与query同级,此时query的作用是?
- 限定聚合的文档范围
聚合必须的三要素:
- 聚合名称
- 聚合类型
- 聚合手段
聚合可配置属性有:
- size:指定聚合结果数量
- order:指定聚合结果排序方式
- field:指定聚合字段
DSL实现Metrics聚合
例如,我们要求获取每个品牌的用户评分的min、max、avg等值
GET /hotel/_search
{"size":0,"aggs":{"brandAgg":{"terms":{"field":"brand","size":20},"aggs":{// 是brands聚合的子聚合,也就是分组后对每组分别计算"score_status":{ // 聚合名称"stats":{ // 聚合类型,这里stats可以计算min、max、avg等"field":"score"// 聚合字段,这里可以是score}}}}}
}
RestAPI实现聚合
@Testpublic void testAggregation() throws IOException {// 准备RequestSearchRequest request = new SearchRequest("hotel");// 准备DSL// 设置sizerequest.source().size(0);// 聚合request.source().aggregation(AggregationBuilders.terms("brandAgg").size(20).field("brand"));//发出请求SearchResponse response = restClient.search(request, RequestOptions.DEFAULT);//解析聚合结果Aggregations aggregations = response.getAggregations();//根据名称获取聚合结果Terms brandTerms = aggregations.get("brand_agg");//获取桶List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();for (Terms.Bucket bucket : buckets) {//获取key,也就是品牌信息String brandName = bucket.getKeyAsString();System.out.println(brandName);}}
实现对品牌、城市、星级的聚合
@Testpublic Map<String , List<String>> testMap() throws IOException {// 准备RequestSearchRequest request = new SearchRequest("hotel");// 准备DSL// 设置sizerequest.source().size(0);// 聚合request.source().aggregation(AggregationBuilders.terms("brandAgg").size(20).field("brand"));request.source().aggregation(AggregationBuilders.terms("cityAgg").size(20).field("city"));request.source().aggregation(AggregationBuilders.terms("starAgg").size(20).field("starName"));//发出请求SearchResponse response = restClient.search(request, RequestOptions.DEFAULT);//解析聚合结果Aggregations aggregations = response.getAggregations();Map<String , List<String>> result = new HashMap<>();result.put("brandAgg" , getAggByName("brandAgg" , aggregations));result.put("cityAgg" , getAggByName("cityAgg" , aggregations));result.put("starAgg" , getAggByName("starAgg" , aggregations));return result;}private List<String> getAggByName(String name , Aggregations aggregations){List<String> result = new ArrayList<>();Terms terms = aggregations.get(name);for (Terms.Bucket bucket : terms.getBuckets()) {String keyAsString = bucket.getKeyAsString();result.add(keyAsString);}return result;}
拼音分词器
如何使用拼音分词器?
下载pinyin分词器
解压并放到elasticsearch的plugin目录
重启
如何自定义分词器?
创建索引库时,在settings中配置,可以包含三部分
character filter
tokenizer
filter
拼音分词器注意事项?
为了避免搜索到同音字,搜索时不要使用拼音分词器
自动补全
elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:
- 参与补全查询的字段必须是completion类型
- 字段的内容一般是用来补全的多个词条形成的数组
// 自动补全查询
GET /test2/_search
{"suggest":{"titleSuggest":{"text":"s","completion":{"field":"title","skip_duplicates":true,"size":10}}}
}
自动补全对字段的要求:
- 类型是completion类型
- 字段值是多词条的数组
@Test
public void testSuggest() throws IOException {// 准备RequestSearchRequest request = new SearchRequest("hotel");// 准备DSLrequest.source().suggest(new SuggestBuilder().addSuggestion("suggestions" , SuggestBuilders.completionSuggestion("suggestion").prefix("h").skipDuplicates(true).size(10)));// 发起请求SearchResponse response = client.search(request,RequestOptions.DEFAULT);// 解析结果Suggest suggest = response.getSuggest();// 根据名称获取补全结果CompletionSuggestion suggestion = suggest.getSuggestion("hotelSuggestion");//获取options并遍历for(CompletionSuggestion.Entry.Option option : suggestion.getOptions()){String text = option.getText().string();System.out.println(text);}
}
数据同步
- 同步调用
- 优点:实现简单,粗暴
- 缺点:业务耦合度高
- 异步通知
- 优点:低耦合,实现难度一般
- 缺点:依赖mq的可靠性
- 监听binlog
- 优点:完全解除服务间耦合
- 缺点:开启binlog增加数据库负担、实现复杂度高
异步通知数据同步步骤:
- 定义config文件,声明队列和交换机bean,并绑定队列与交换机
- 在增加删除修改接口中发送mq消息到指定的增删改队列
- 定义监听器,监听mq消息并修改es文档
集群搭建
ES集群结构
单机的es做数据存储,必然面临两个问题:海量数据存储问题,单点故障问题
- 海量数据存储问题:将索引库从逻辑上拆分N个分片(shard),存储到多个节点
- 单点故障问题:将分片数据在不同节点备份(replica)
创建es集群
首先编写一个docker-compose.yml文件,内容如下:
version: '2.2'
services:es01:image: elasticsearch:7.12.1container_name: es01environment:- node.name=es01- cluster.name=es-docker-cluster- discovery.seed_hosts=es02,es03- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data01:/usr/share/elasticsearch/dataports:- 9200:9200networks:- elastices02:image: elasticsearch:7.12.1container_name: es02environment:- node.name=es02- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es03- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data02:/usr/share/elasticsearch/dataports:- 9201:9200networks:- elastices03:image: elasticsearch:7.12.1container_name: es03environment:- node.name=es03- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es02- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data03:/usr/share/elasticsearch/datanetworks:- elasticports:- 9202:9200
volumes:data01:driver: localdata02:driver: localdata03:driver: localnetworks:elastic:driver: bridge
es运行需要修改一些linux系统权限,修改/etc/sysctl.conf
文件
vi /etc/sysctl.conf
添加下面的内容:
vm.max_map_count=262144
然后执行命令,让配置生效:
sysctl -p
通过docker-compose启动集群:
docker-compose up -d
集群状态监控
kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。
这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro
双击的cerebro.bat文件即可启动服务。
访问http://localhost:9000 即可进入管理界面:
输入你的elasticsearch的任意节点的地址和端口,点击connect即可:
绿色的条,代表集群处于绿色(健康状态)。
创建索引库
1)利用kibana的DevTools创建索引库
在DevTools中输入指令:
PUT /itcast
{"settings": {"number_of_shards": 3, // 分片数量"number_of_replicas": 1 // 副本数量},"mappings": {"properties": {// mapping映射定义 ...}}
}
2)利用cerebro创建索引库
利用cerebro还可以创建索引库:
填写索引库信息:
点击右下角的create按钮:
查看分片效果
回到首页,即可查看索引库分片效果:
ES集群中的节点角色
elasticsearch中集群节点有不同的职责划分:
ES脑裂
默认情况下,每个节点都是master eligible节点,因此一旦master节点宕机,其他候选节点会选举一个称为主节点。当主节点与其他节点网络故障时,可能发生脑裂问题。
为了避免脑裂,需要要求选票超过(eligible节点数量+1)/2才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimux_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题。
- master eligible结点的作用?
- 参与集群选主
- 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求
- data结点的作用?
- 数据的CRUD
- coordinator结点的作用?
- 路由请求到其他节点
- 合并查询到的结果,返回给用户
ES集群的分布式存储
当新增文档时,应该保存到不同的分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?elasticsearch会通过hash算法来计算文档应该存储到哪个分片:
shard = hash(_routing) % number_of_shards
说明:
- _routing默认是文档的id
- 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!
ES集群的分布式查询
elasticsearch的查询分为两个阶段:
- scatter phase:分散阶段,coordinating node会把请求分发到每一个分片
- gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户
ES集群的故障转移
集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其他节点,确保数据安全,这个叫做故障转移