UniverSeg:通用医学图像分割模型来了!

自从今年以来ChatGPT爆火和GPT-4的发布,一时间在大模型的潮流下,通用人工智能(AGI)也呼之欲出。随着本月初SAM和SegGPT等通用的CV大模型的提出,大模型和通用模型这把火也逐渐烧到的CV领域,特别是图像分割领域。很多做分割方向的小伙伴自我调侃说一觉醒来,自己的方向没了。

笔者所在的医学影像行业,一直以数据和高成本标注而筑起非常高的领域壁垒。几个月前要是有人跟我说想做一个医学影像的通用分割模型,我一定会觉得你是在说胡话。但此一时彼一时也,月初SAM发布的时候,主要对标的自然图像,笔者也测试了其在医学影像上表现,效果可以说超出预期了,但远不如自然图像,这让笔者感到医学影像的领域壁垒要打破可能还早。

但打脸来得太快。昨天看到了MIT发布的UniverSeg工作,名字很直接,针对的就是医学影像的通用分割:UniverSeg: Universal Medical Image Segmentation。趁着今天周末在家,赶紧把论文打印出来认真读了一遍。 

b7e036228ec481a2e1d323ca239fc32d.jpeg

近几年深度学习图像分割一直是高度定制化的,而医学影像分割尤其如此,对于不同影像模态(CT、MR、超声、X-ray、OCT等)、不同身体部位、不同标注(同一影像,可能会有不同的目标对象)。笔者所在的行业和方向,做一个目标影像或者疾病的分割任务,一定是专门收集该任务的影像数据,然后找专业人员来标注,再训练一个定制化的分割模型,这个模型是高度垂直的、定制化的和难以迁移的。但现在SAM和UnvierSeg的出现打破了这一范式。如图2所示,区别于此前的训练-预测的分割范式,UniverSeg给出的分割范式是:输入查询图像(Query Image),即待分割图像,再给定若干对提示图像-标注对(Support Set),UniverSeg就可以对查询图像进行很好的分割。 

fed174ab6d13927f2575fe826c7d6dba.png

数据

先来看数据部分。UniverSeg研究总共使用了53个开源或者半开源的医学影像数据集,总共包括26个医学领域、16种影像模态和22000多次扫描。因为聚焦的是2D医学图像分割,所以对来源数据集中属于3D volume的数据都做了层采样,包括中间层采样(mid-slices)和最多标签体素层采样(max-slices)。基于这53个数据集构建的新数据被命名为MegaMedical数据集。但因为各来源数据集的有限获取规则,所以作者也没有开源MegaMedical。训练集构成信息如图3所示。

f0f88f882adb9f1feba481ba866e9642.png

模型

模型部分是UniverSeg工作的重点部分。传统的分割任务范式针对数据集,目标是训练一个监督学习模型,其中即为常规的卷积分割网络。但UniverSeg给出的模型范式是:,其中表示给定任务的输入,即待分割的查询图像,表示为提示图像和标注对:。

UniverSeg针对以上分割任务范式,提出了一种交叉卷积构成的CrossBlock结构,能够在查询图像和提示图像之间进行信息交互。给定查询图像特征图和一组提示图像特征图,交叉卷积层可以定义为:

其中表示两个特征图的concatenation。基于上述交叉层,进一步地可搭建交叉模块为:

最终,基于交叉卷积模块构建出的UniverSeg网络结构如图3所示。同时,为了提高UniverSeg的性能,模型在训练的时候也都做了数据增强,包括In-Task和Task两种数据增强方案。UniverSeg的训练流程如下图所示。整体结构仍然是基于UNet的编解码架构,只是卷积层都用CrossConv模块来代替了。

55e880224135965ab09fb054ac670614.png

实验

实验部分主要是与一些少样本模型(SENet、ALPNet、PANet)做了基线对比,然后在任务多样性、提示数据规模、查询图像规模等方面做了消融研究。UniverSeg试验部分做得很扎实,附录里面给了很多维度的性能结果,笔者这里不做一一展示。

6e38e972fe0641c5cf097dccd0d214ce.png

ce284f43b069daff018fe77b786d859c.png

总结

UniverSeg的主要贡献包括:

  • 提出了基于CrossBlock交叉模块机制的UniverSeg作为新的医学图像分割范式,无需重新训练新分割模型。

  • 与以往的少样本模型相比,UniverSeg在未经训练的新影像上表现出了与监督分割模型相当的精度。

  • 训练时的样本多样性能够使得UniverSeg有着强大的泛化性能。

总体来讲,在数据壁垒极高和标注成本极大的医学图像领域,通用分割模型不在遥不可及。随着AGI和CV大模型的发展,UniverSeg以及后续研究会逐渐推进这一领域的发展。2D分割模型也会逐渐向2.5D和3D扩展和延伸。

代码

项目代码地址:https://github.com/JJGO/UniverSeg demo地址:https://colab.research.google.com/drive/19Sauvhyzae5qvVLguaZRCuH1vJ5oTuw-?usp=sharing


另外,为了聚集更多的人参与到AI生产力工具上来,笔者前几天特意组建了一个名为【ChatGPT实验室】的知识星球,目前已有170+读者加入,星球的主要定位包括:

1. 如何基于ChatGPT提高工作和学习效率。

2. 跟踪NLP、LLM、AIGC和AGI的前沿动态和最新进展。

3. 分享ChatGPT的最新应用和玩法。

9f204358d67ac7d933ea76e3449e86d0.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/48334.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[转]医学图像分割综述

原作者: Zeynettin Akkus & Alfiia Galimzianova & Assaf Hoogi & Daniel L. Rubin & Bradley J. Erickson 时间:2017 csdn作者链接: https://blog.csdn.net/xy9476/article/details/80587151 (转载为收藏) Abstract 这篇综…

最新《医学图像分割》综述,详述六大类100多个算法

来源:专知 医学图像自动分割是医学领域的一个重要课题,也是计算机辅助诊断领域的一个重要分支。U-Net由于其灵活性、优化的模块化设计和在所有医学图像模式中的成功,是最广泛应用的图像分割体系结构。多年来,U-Net模式获得了学术界…

通用医学图像分割模型UniverSeg

虽然深度学习模型已经成为医学图像分割的主要方法,但它们通常无法推广到涉及新解剖结构、图像模态或标签的unseen分割任务。给定一个新的分割任务,研究人员通常必须训练或微调模型,这很耗时,并对临床研究人员构成了巨大障碍&#…

Unet分割医学图像全记录/结果全白解决办法/多分类Dice loss

文章目录 任务介绍数据来源及预处理Unet实现过程中遇到的bug 任务介绍 本项目是基于Unet网络对心肌图像进行心池和心肌分割。写这篇博客为了记录下我在写模型时遇到的bug和思考,我发现好像没有一篇从头到尾的笔记,我作为小白真的遇到了很多大坑&#xf…

【医学图像】图像分割系列.4

介绍几篇使用Transformer结构做医学图像分割的论文:CASTformer(NeuralPS2022),PHNet(arXiv2023)。 Class-Aware Adversarial Transformers for Medical Image Segmentation, NeuralPS2022 解读&#xff1a…

医学图像分割实战——使用U-Net实现肾脏CT分割

使用U-Net实现肾脏CT分割 数据集准备数据来源数据预处理 网络结构及代码网络结构训练代码 训练过程参数设置:可视化 结果分析 数据集准备 数据来源 MICCAI KiTS19(Kidney Tumor Segmentation Challenge):https://kits19.grand-challenge.org/ KiTS201…

医学图像分割之 Dice Loss

文章目录 医学图像分割之 Dice Loss1. Dice coefficient 定义1.1. Dice 系数计算示例1.2. Dice-coefficient loss function vs cross-entropy 2. Dice 系数的 Pytorch 实现2.1. Dice 系数2.2. Dice Loss2.3. BCELoss2d 3. Dice 系数的 Keras 实现4. Dice 系数的 TensorFlow 实现…

医学图像分割常见评价指标(单目标)——包含源码讲解和指标缺陷

单目标分割常见评价指标 1 知道4个常见指标,TP,TN,FP,FN2 评价分割区域准确率2.1 Recall Sensitivity TPR(True Positive Rate)2.2 Specificity (True Negative Rate)2.3 Precision (PPV, 精确率)2.4 Dice Coefficient…

医学图像分割之Attention U-Net

目录 一、背景 二、问题 三、解决问题 四、Attention U-Net网络结构 简单总结Attention U-Net的操作:增强目标区域的特征值,抑制背景区域的目标值。抑制也就是设为了0。 一、背景 为了捕获到足够大的、可接受的范围和语义上下文信息,在标…

常用的医学图像分割评价指标

常用的图像分割评价指标非常多,论文中常用的指标包括像素准确率,交并比(IOU),Dice系数,豪斯多夫距离,体积相关误差。 下面提到的所有案例都是二分类,标签中只有0和1 目录 一:像素…

医学图像分割评判标准及程序代码

文章目录 1.图像分割指标2. 两个问题3.IOU和假阳性率4. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure 参考资源: 1.https://blog.csdn.net/zichen_ziqi/article/details/80408465 2.https://blog.csdn.net/HXG2006/article/details/79649154 …

基于Android studio开发的图灵智能聊天机器人

前言 在人工智能时代,开发一款自己的智能问答机器人,既可以提升自己的编程能力,又可以作为开发项目的实战练习。 百度有小度,小米有小爱,VIVO有小V,总之类似的智能聊天机器人是越来越多了。面对这些智能的机…

短视频矩阵源码开发部署--开原

短视频矩阵源码是一种常见的视频编码标准,它通过将视频分成多个小块并对每个小块进行压缩来实现高效的视频传输。在本文中,我们将介绍短视频矩阵的原理和实现,并提供示例代码。 开发链路解析 短视频矩阵系统源码开发链路包括需求分析、技术…

ChatGPT危了!注意力机制的神秘bug曝光!Transformer模型恐大受冲击...

点击下方卡片,关注“CVer”公众号 AI/CV重磅干货,第一时间送达 点击进入—>【Transformer】微信交流群 转载自:新智元 【导读】「注意力公式」存在8年的bug首现,瞬间引爆舆论。爆料者称,基于Transformer架构打造的模…

短视频抖音seo矩阵源码如何搭建开发?

抖音SEO矩阵源码排名逻辑采用一系列算法进行生成,其中包括用户行为、关键词匹配和内容质量等多维度指标的衡量。首先,用户行为是决定视频排名的主要因素,包括点赞数、评论数、观看时长和转发次数等。其次,关键词匹配也是影响排名的…

chatgpt赋能python:使用Python让照片动起来:一种新颖的SEO方法

使用Python让照片动起来:一种新颖的SEO方法 在当今数字时代,社交媒体已经成为营销策略中不可或缺的一部分。人们越来越喜欢以图像的形式来获取信息。然而,在面对大量的图像时,如何让自己的图片和品牌脱颖而出?答案是&…

chatgpt赋能python:PythonWand:用Python实现的ImageMagick工具箱

Python Wand: 用Python实现的ImageMagick工具箱 ImageMagick是一款强大的图像处理工具箱,经常被用于缩放、裁剪和转换图像等任务。Python Wand是对ImageMagick命令行工具的Python封装,使得Python程序员能够使用Python代码来操作图像。 为什么使用Pytho…

短视频如何进行高效制作?元引擎助你一臂之力

在当今社会,视频制作已经成为了一种非常流行和重要的创意方式。越来越多的人开始尝试制作自己的短视频,但是对于很多新手小白来说,短视频制作可能是一项相对困难的任务。但是现在,使用元引擎AI一键生成原创视频系统,可…

Python预测彩票中奖

文章目录[隐藏] python来解答你有生之年可以中双色球 python来解答你有生之年可以中双色球 昨天买了几注双色球开奖了,规划好了中奖后怎么花,紧张又刺激的等待后,狗带…… 到底我们能不能中双色球呢,用Python来验证一下吧&#xf…

基于GPT-4的 IDEA 神仙插件,无需魔法,非常不错!

大家好,我是不才陈某~ 最近发现了一款很厉害的 Intellij IDEA 插件——Bito。 Bito 插件无需魔法,亲测有效,可以基于 GPT-4 来写代码同时还提供了一些有用的功能,如自动补全提交信息、快速查看历史记录等。 没使用魔法的情况下&am…