用户画像分析

      版权声明:本文为博主原创文章,未经博主允许不得转载。违者必究,究也没用!          https://blog.csdn.net/young_0609/article/details/84957956        </div><link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-f57960eb32.css"><link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-f57960eb32.css"><div class="htmledit_views" id="content_views"><p>一、 什么是用户画像</p>

        用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易理解的特征来描述用户,可以让人更容易理解用户,并且可以方便计算机处理。

用户画像是对现实世界中用户的建模,用户画像应该包含目标,方式,组织,标准,验证这5个方面。

目标:指的是描述人,认识人,了解人,理解人。

方式:又分为非形式化手段,如使用文字、语言、图像、视频等方式描述人;形式化手段,即使用数据的方式来刻画人物的画像。

组织:指的是结构化、非结构化的组织形式。

标准:指的是使用常识、共识、知识体系的渐进过程来刻画人物,认识了解用户。

验证:依据侧重说明了用户画像应该来源事实、经得起推理和检验。

        在产品早期和发展期,会较多地借助用户画像,帮助产品人员理解用户的需求,想象用户使用的场景,产品设计从为所有人做产品变成为三四个人做产品,间接的降低复杂度。

二、 用户画像的作用

在互联网、电商领域用户画像常用来作为精准营销、推荐系统的基础性工作,其作用总体包括:

(1)精准营销:根据历史用户特征,分析产品的潜在用户和用户的潜在需求,针对特定群体,利用短信、邮件等方式进行营销。

(2)用户统计:根据用户的属性、行为特征对用户进行分类后,统计不同特征下的用户数量、分布;分析不同用户画像群体的分布特征。

(3)数据挖掘:以用户画像为基础构建推荐系统、搜索引擎、广告投放系统,提升服务精准度。

(4)服务产品:对产品进行用户画像,对产品进行受众分析,更透彻地理解用户使用产品的心理动机和行为习惯,完善产品运营,提升服务质量。

(5)行业报告&用户研究:通过用户画像分析可以了解行业动态,比如人群消费习惯、消费偏好分析、不同地域品类消费差异分析

        根据用户画像的作用可以看出,用户画像的使用场景较多,用户画像可以用来挖掘用户兴趣、偏好、人口统计学特征,主要目的是提升营销精准度、推荐匹配度,终极目的是提升产品服务,起到提升企业利润。用户画像适合于各个产品周期:从新用户的引流到潜在用户的挖掘、从老用户的培养到流失用户的回流等。

        总结来说,用户画像必须从实际业务场景出发,解决实际的业务问题,之所以进行用户画像,要么是获取新用户,要么是提升用户体验、或者挽回流失用户等具有明确的业务目标。

        另外关于用户画像数据维度的问题,并不是说数据维度越丰富越好,总之,画像维度的设计同样需要紧跟业务实际情况进行开展。

 三、 用户画像的分类

        从画像方法来说,可以分为定性画像、定性+定量画像、定量画像

        从应用角度来看,可以分为行为画像、健康画像、企业信用画像、个人信用画像、静态产品画像、旋转设备画像、社会画像和经济画像等。

四、 用户画像需要用到哪些数据

        一般来说,根据具体的业务内容,会有不同的数据,不同的业务目标,也会使用不同的数据。在互联网领域,用户画像数据可以包括以下内容:

(1)人口属性:包括性别、年龄等人的基本信息

(2)兴趣特征:浏览内容、收藏内容、阅读咨询、购买物品偏好等

(3)消费特征:与消费相关的特征

(4)位置特征:用户所处城市、所处居住区域、用户移动轨迹等

(5)设备属性:使用的终端特征等

(6)行为数据:访问时间、浏览路径等用户在网站的行为日志数据

(7)社交数据:用户社交相关数据

        用户画像数据来源广泛,这些数据是全方位了解用户的基础,这里以Qunar的画像为例,其画像数据主要维度如下所示,包括用户RFM信息、航线信息等。

        Qunar的画像数据仓库构建都是基于Qunar基础数据仓库构建,然后按照维度进行划分。

五、 用户画像主要应用场景

a)用户属性

b)用户标签画像

c)用户偏好画像

d)用户流失

e)用户行为

f)产品设计

g) 个性化推荐、广告系统、活动营销、内容推荐、兴趣偏好

六、 用户画像使用的技术方法

七、 用户画像标签体系的建立

1、什么是标签体系

        用户画像是对现实用户做的一个数学模型,在整个数学模型中,核心是怎么描述业务知识体系,而这个业务知识体系就是本体论,本体论很复杂,我们找到一个特别朴素的实现,就是标签。

        标签是某一种用户特征的符号表示。是一种内容组织方式,是一种关联性很强的关键字,能方便的帮助我们找到合适的内容及内容分类。(注:简单说,就是你把用户分到多少个类别里面去,这些类是什么,彼此之间有什么关系,就构成了标签体系)

        标签解决的是描述(或命名)问题,但在实际应用中,还需要解决数据之间的关联,所以通常将标签作为一个体系来设计,以解决数据之间的关联问题。

        一般来说,将能关联到具体用户数据的标签,称为叶子标签。对叶子标签进行分类汇总的标签,称为父标签。父标签和叶子标签共同构成标签体系,但两者是相对概念。例如:下表中,地市、型号在标签体系中相对于省份、品牌,是叶子标签。

        用户画像标签体系创建后一般要包含以下几个方面的内容

(1)标签分类

        用户画像标签可以分为基础属性标签和行为属性标签。

        由于基于一个目标的画像,其标签是在动态扩展的,所以其标签体系也没有统一的模板,在大分类上,与自身的业务特征有很大的关联,在整体思路上可以从横纵两个维度展开思考:横向是产品内数据和产品外数据,纵向是线上数据和线下数据。而正中间则是永恒不变的“人物基础属性”。

        如果说其他的分类因企业特征而定,那么只有人物特征属性(至于名字叫什么不重要,关键是内涵)是各家企业不能缺失的板块。

        所谓人物基础属性指的是:用户客观的属性而非用户自我表达的属性,也就是描述用户真实人口属性的标签。所谓非“自我表达”,举例来说,某产品内个人信息有性别一项,用户填写为“女”,而通过用户上传的身份证号,以及用户照片,用户购买的产品,甚至用户打来的客服电话,都发现该用户性别是“男性”。那么在人物基础属性中的性别,应该标识的是“男性”,但是用户信息标签部分,自我描述的性别则可能标注为女性。

(2)标签级别(标签的体系结构)

        分级有两个层面的含义,其一是:指标到最低层级的涵盖的层级;其二是指:指标的运算层级。其一非常好理解,这里重点说运算层级。

        标签从运算层级角度可以分为三层:事实标签、模型标签、预测标签。

        事实标签:是通过对于原始数据库的数据进行统计分析而来的,比如用户投诉次数,是基于用户一段时间内实际投诉的行为做的统计。

        模型标签:模型标签是以事实标签为基础,通过构建事实标签与业务问题之间的模型,进行模型分析得到。比如,结合用户实际投诉次数、用户购买品类、用户支付的金额等,进行用户投诉倾向类型的识别,方便客服进行分类处理。

        预测标签:则是在模型的基础上做预测,比如针对投诉倾向类型结构的变化,预测平台舆情风险指数。

(3)标签命名&赋值

        我们用一张图来说明一下命名和赋值的差别,只要在构建用户标签的过程种,有意识的区别标签命名和赋值足矣,不再赘述。

 

(4)标签属性

        标签属性可以理解为针对标签进行的再标注,这一环节的工作主要目的是帮助内部理解标签赋值的来源,进而理解指标的含义。如图所示,可以总结为5种来源:

1、固有属性:是指这些指标的赋值体现的是用户生而有之或者事实存在的,不以外界条件或者自身认知的改变而改变的属性。比如:性别、年龄、是否生育等。

2、推导属性:由其他属性推导而来的属性,比如星座,我们可以通过用户的生日推导,比如用户的品类偏好,则可以通过日常购买来推导。

3、行为属性:产品内外实际发生的行为被记录后形成的赋值,比如用户的登陆时间,页面停留时长等。

4、态度属性:用户自我表达的态度和意愿。比如说我们通过一份问卷向用户询问一些问题,并形成标签,如询问用户:是否愿意结婚,是否喜欢某个品牌等。当然在大数据的需求背景下,利用问卷收集用户标签的方法效率显得过低,更多的是利用产品中相关的模块做了用户态度信息收集。

5、测试属性:测试属性是指来自用户的态度表达,但并不是用户直接表达的内容,而是通过分析用户的表达,结构化处理后,得出的测试结论。比如,用户填答了一系列的态度问卷,推导出用户的价值观类型等。

        值得注意的是,一种标签的属性可以是多重的,比如:个人星座这个标签,既是固有属性,也是推导属性,它首先不以个人的意志为转移,同时可以通过身份证号推导而来。

        即便你成功了建立用户画像的标签体系,也不意味着你就开启了用户画像的成功之路,因为有很大的可能是这些标签根本无法获得,或者说无法赋值。

        标签无法赋值的原因有:数据无法采集(没有有效的渠道和方法采集到准确的数据,比如用户身份证号)、数据库不能打通、建模失败(预测指标无法获得赋值)等等。

 2、标签体系结构

        标签体系可以归纳出如下的层级结构。

(1)原始输入层

        主要指用户的历史数据信息,如会员信息、消费信息、网络行为信息。经过数据的清洗,从而达到用户标签体系的事实层。

(2)事实层

        事实层是用户信息的准确描述层,其最重要的特点是,可以从用户身上得到确定与肯定的验证。如用户的人口属性、性别、年龄、籍贯、会员信息等。

(3)模型预测层

        通过利用统计建模,数据挖掘、机器学习的思想,对事实层的数据进行分析利用,从而得到描述用户更为深刻的信息。如通过建模分析,可以对用户的性别偏好进行预测,从而能对没有收集到性别数据的新用户进行预测。还可以通过建模与数据挖掘,使用聚类、关联思想,发现人群的聚集特征。

(4)营销模型预测

        利用模型预测层结果,对不同用户群体,相同需求的客户,通过打标签,建立营销模型,从而分析用户的活跃度、忠诚度、流失度、影响力等可以用来进行营销的数据。

(5)业务层

        业务层可以是展现层。它是业务逻辑的直接体现,如图中所表示的,有车一族、有房一族等。

3、标签体系结构分类

        一般来说,设计一个标签体系有3种思路,分别是:(1)结构化标签体系;(2)半结构化标签体系;(3)非结构化标签体系。

(1)结构化标签体系

        简单地说,就是标签组织成比较规整的树或森林,有明确的层级划分和父子关系。结构化标签体系看起来整洁,又比较好解释,在面向品牌广告井喷时比较好用。性别、年龄这类人口属性标签,是最典型的结构化体系。下图就是Yahoo!受众定向广告平台采用的结构化标签体系。

(2)半结构化标签体系

        在用于效果广告时,标签设计的灵活性大大提高了。标签体系是不是规整,就不那么重要了,只要有效果就行。在这种思路下,用户标签往往是在行业上呈现出一定的并列体系,而各行业内的标签设计则以“逮住老鼠就是好猫”为最高指导原则,切不可拘泥于形式。下图是Bluekai聚合多家数据形成的半结构化标签体系。

(3)非结构化标签体系

        非结构化,就是各个标签就事论事,各自反应各自的用户兴趣,彼此之间并无层级关系,也很难组织成规整的树状结构。非结构化标签的典型例子,是搜索广告里用的关键词。还有Facebook用的用户兴趣词。

 4、用户画像标签层级的建模方法

        用户画像的核心是标签的建立,用户画像标签建立的各个阶段使用的模型和算法如下图所示。

原始数据层。对原始数据,我们主要使用文本挖掘的算法进行分析如常见的TF-IDF、TopicModel主题模型、LDA 等算法,主要是对原始数据的预处理和清洗,对用户数据的匹配和标识。

事实标签层。通过文本挖掘的方法,我们从数据中尽可能多的提取事实数据信息,如人口属性信息,用户行为信息,消费信息等。其主要使用的算法是分类和聚类。分类主要用于预测新用户,信息不全的用户的信息,对用户进行预测分类。聚类主要用于分析挖掘出具有相同特征的群体信息,进行受众细分,市场细分。对于文本的特征数据,其主要使用相似度计算,如余弦夹角,欧式距离等。

模型标签层。使用机器学习的方法,结合推荐算法。模型标签层完成对用户的标签建模与用户标识。其主要可以采用的算法有回归,决策树,支持向量机等。通过建模分析,我们可以进一步挖掘出用户的群体特征和个性权重特征,从而完善用户的价值衡量,服务满意度衡量等。

预测层。也是标签体系中的营销模型预测层。这一层级利用预测算法,如机器学习中的监督学习,计量经济学中的回归预测,数学中的线性规划等方法。实习对用户的流失预测,忠实度预测,兴趣程度预测等等,从而实现精准营销,个性化和定制化服务。

不同的标签层级会考虑使用对其适用的建模方法,对一些具体的问题,有专门的文章对其进行研究。

八、 用户画像基本步骤[F2] 

        根据具体业务规则确定用户画像方向后,开展用户画像分析,总体来说,一个用户画像流程包括以下三步。(1)用户画像的基本方向;(2)用户数据收集;(3)用户标签建模。

        另外,需要注意的是用户画像的时效性,构建画像的数据多为历史数据,但用户的行为、偏好等特征多会随着时间的推移而发生变化。

九、 用户画像验证

十、 用户画像的实际例子

 

十一、    用户画像平台&架构

用户画像平台需要实现的功能。

        用户画像系统技术架构

(1)    数据处理

a、数据指标的梳理来源于各个系统日常积累的日志记录系统,通过sqoop导入hdfs,也可以用代码来实现,比如spark的jdbc连接传统数据库进行数据的cache。还有一种方式,可以通过将数据写入本地文件,然后通过sparksql的load或者hive的export等方式导入HDFS。

b、通过hive编写UDF 或者hiveql根据业务逻辑拼接ETL,使用户对应上不同的用户标签数据(这里的指标可以理解为每个用户打上了相应的标签),生成相应的源表数据,以便于后续用户画像系统,通过不同的规则进行标签宽表的生成。

(2)    数据平台

a、数据平台应用的分布式文件系统为Hadoop的HDFS,因为Hadoop2.0以后,任何的大数据应用都可以通过ResoureManager申请资源,注册服务。比如(sparksubmit、hive)等等。而基于内存的计算框架的出现,就并不选用Hadoop的MapReduce了。当然很多离线处理的业务,很多人还是倾向于使用Hadoop,但是Hadoop封装的函数只有map和Reduce太过单一,而不像spark一类的计算框架有更多封装的函数(可参考博客spark专栏)。可以大大提升开发效率。

b、计算的框架选用Spark以及RHadoop,这里Spark的主要用途有两种,一种是对于数据处理与上层应用所指定的规则的数据筛选过滤,(通过Scala编写spark代码提交至sparksubmit)。一种是服务于上层应用的SparkSQL(通过启动spark thriftserver与前台应用进行连接)。 RHadoop的应用主要在于对于标签数据的打分,比如利用协同过滤算法等各种推荐算法对数据进行各方面评分。

c、MongoDB内存数据的应用主要在于对于单个用户的实时的查询,也是通过对spark数据梳理后的标签宽表进行数据格式转换(json格式)导入mongodb,前台应用可通过连接mongodb进行数据转换,从而进行单个标签的展现。(当然也可将数据转换为Redis中的key value形式,导入Redis集群)

d、mysql的作用在于针对上层应用标签规则的存储,以及页面信息的展现。后台的数据宽表是与spark相关联,通过连接mysql随后cache元数据进行filter、select、map、reduce等对元数据信息的整理,再与真实存在于Hdfs的数据进行处理。

(3)    面向应用

从刚才的数据整理、数据平台的计算,都已经将服务于上层应用的标签大宽表生成。(用户所对应的各类标签信息)。那么前台根据业务逻辑,勾选不同的标签进行求和、剔除等操作,比如本月流量大于200M用户(标签)+本月消费超过100元用户(标签)进行和的操作,通过前台代码实现sql的拼接,进行客户数目的探索。这里就是通过jdbc的方式连接spark的thriftserver,通过集群进行HDFS上的大宽表的运算求count。(这里要注意一点,很多sql聚合函数以及多表关联join 相当于hadoop的mapreduce的shuffle,很容易造成内存溢出,相关参数调整可参考本博客spark栏目中的配置信息)这样便可以定位相应的客户数量,从而进行客户群、标签的分析,产品的策略匹配从而精准营销。

十二、用户画像困难点、用户画像瓶颈

用户画像困难点主要表现为以下4个方面

资料搜集和数据挖掘

       在画像之前需要知道产品的用户特征和用户使用产品的行为等因素,从而从总体上掌握对用户需求需求

         创建用户画像不是抽离出典型进行单独标签化的过程,而是要融合边缘环境的相关信息来进行讨论

定量调研分析

用户标签画像

我们的用户标签包含基本特征、社会身份、顾客用户生命周期、类目偏好等等。比如说你怎么判断一个人是不是对女装感兴趣,假设我们有一个类目就是女装,那很好办,如果你购买都是女装,那会认为你这个人对女装比较感兴趣。

挑战

我们期间遇到了两方面的挑战:

亿级画像系统实践和应用

记录和存储亿级用户的画像,支持和扩展不断增加的维度和偏好,毫秒级的更新,支撑个公司性化推荐、广告投放和精细化营销等产品。
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/65173.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据分析-用户画像详解

转自&#xff1a; 百丽百灵&#xff08;ID&#xff1a;BL100BL&#xff09; 转自数据分析公号&#xff0c;来源&#xff1a;数据客 什么是用户画像&#xff1f; 用户画像&#xff08;User Profile&#xff09;&#xff0c;作为大数据的根基&#xff0c;它完美地抽象出一个用户的…

数据应用案例之“客户画像体系”

01 数据标签管理和应用中的问题 数据标签是面向业务的数据资产组织方式&#xff0c;是数据资产为业务系统赋能的重要载体。数据标签从源系统采集、数据清洗、分层管理&#xff0c;到最终根据业务需求组织成可使用的标签&#xff0c;是一个漫长的过程&#xff0c;其中有五大痛…

行为画像分析 行业客户画像 行业用户画像

在大数据时代&#xff0c;洞察「用户画像」是精准营销的基础和前提。它可以给出一个用户的信息全貌&#xff0c;为品牌精准快速地分析用户行为习惯、消费习惯并制定精准营销计划提供坚实的数据和信息基础。 那么&#xff0c;品牌该如何构建精准的用户画像&#xff0c;从而实现…

客户画像中的聚类分析

客户画像会用聚类分析 实际工作中&#xff0c;最常使用的当属回归类模型&#xff0c;其次便是客户画像。即便是评分模型也会涉及到客户画像&#xff0c;由于首富客户的违约特征与普通百姓不同&#xff0c;故需进行区分&#xff0c;信用分池即为客户画像。 客户画像使用的技术为…

用户画像 客户喜好消费的商品分类模型表

日萌社 人工智能AI&#xff1a;Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战&#xff08;不定时更新&#xff09; 用户画像 总文章 客户喜好消费的商品分类模型表 订单中 商品类目表 GDM层&#xff08;临时表&#xff09;SQL目的&#xff1a;统计用户订单…

如何做好会员用户画像分析,比消费者本身更懂自己?

随着各平台知识付费开启&#xff0c;“万物付费时代”已悄然而至。线下传统的粗犷式运营模式已不再符合时代潮流。如何在这样一个付费时代做好企业的精准化会员客户策略分析管理&#xff0c;成为当今人们尤为关注的话题。 作品背景&#xff1a; 某连锁超市在各地有80家线下零…

如何给你的客户画像

悟空CRM ​ 已认证的官方帐号 14 人赞同了该文章 为客户画像需要利用所有自有和第三方可以收集和利用的数据信息,通过信息综合和特征分析,形成对该客户的整体特征的全面认识。客户画像包括面向企业、组织的机构客户画像和面向消费者的个人客户画像。客户画像面向的对象不同…

如何构建用户画像来实现精准营销?

用户画像&#xff0c;又称人群画像&#xff0c;是根据客户人口统计学信息&#xff0c;社交关系&#xff0c;偏好习惯和消费行为等信息而抽象出来的标签化画像。 构建客户画像的核心工作即是给客户贴“标签”&#xff08;犹如娱乐圈中明星的立人设&#xff09; 标签由两部分组…

SPSS 市场细分:客户画像\客户价值模型

行为标签&#xff08;x&#xff09;\价值标签&#xff08;y&#xff09; 客户行为标签的制作步骤X&#xff1a; 判断x的个数分组&#xff1a;通过聚类算法&#xff08;系统聚类、K均值聚类、俩阶段聚类、神经网络聚类&#xff09;&#xff1b;制作标签&#xff08;重点&#…

客户流失及用户画像分析

1 项目背景 在今天产品高度同质化的阶段&#xff0c;市场竞争不断加剧&#xff0c;企业与企业之间的竞争&#xff0c;主要集中在对客户的争夺上。“用户就是上帝”促使众多企业不惜代价去争夺尽可能多的新客户。但是&#xff0c;在企业不惜代价发展新用户的过程中&#xff0c;…

淘宝用户行为分析——用户画像

文章目录 一、数据介绍二、数据预处理2.1 数据抽样2.2 缺失值处理2.3 日期与时段处理2.4 制作用户标签表 三、用户行为标签3.1 用户浏览活跃时间段3.2 用户购买活跃时间段3.3 关于类目的用户行为3.3.1 浏览最多的类目3.3.2 收藏最多的类目3.3.3 加购最多的类目3.3.4 购买最多的…

消费者用户画像分析

项目描述 你拥有一个超市(Supermarket Mall)。通过会员卡&#xff0c;你用有一些关于你的客户的基本数据&#xff0c;如客户ID&#xff0c;年龄&#xff0c;性别&#xff0c;年收入和消费分数。消费分数是根据客户行为和购买数据等定义的参数分配给客户的。 问题陈述&#xf…

用户画像系列——Lookalike在营销圈选扩量中的应用

在用户画像系列——当我们聊用户画像&#xff0c;我们在聊什么&#xff1f; 介绍了用户画像的应用场景: (1)个性化推荐 通过用户标签给用户推荐合适的商品或者内容 (2)营销圈选 根据组合条件(比如说:性别女、年龄25-30、都市白领)圈选出一部分用户&#xff0c;给他们发送p…

一键上手时下最火AI作画工具

摘要&#xff1a;在华为云ModelArts上&#xff0c; 无需考虑计算资源、环境的搭建&#xff0c;就算不懂代码&#xff0c;也能按照教程案例&#xff0c;通过Stable Diffusion成为艺术大师。 本文分享自华为云社区《跟着华为云ModelArts&#xff0c;一键上手时下最火AI作画工具》…

模型压缩总结

1.模型复杂度衡量 model sizeRuntime Memory Number of computing operations model size 就是模型的大小&#xff0c;我们一般使用参数量parameter来衡量&#xff0c;注意&#xff0c;它的单位是个。但是由于很多模型参数量太大&#xff0c;所以一般取一个更方便的单位&am…

2019 智见 AI workshop in Beijing

[持续更新]2019 智见 AI workshop in Beijing 前言代季峰&#xff1a;卷积神经网络中的几何形变建模Deformable Conv V1Deformable Conv V2Tricks & Exprience 张士峰&#xff1a;物体检测算法的对比探索和展望Detector Algorithm Overviewanchor-basedanchor-free RefineD…

湖北黄冈中学2021年高考成绩查询,2019年黄冈中学高考成绩发布,包揽全市文科前13名,省内排名却不值一提...

2019年黄冈中学高考成绩发布&#xff0c;包揽全市文科前13名&#xff0c;省内排名却不值一提 2019年6月23日&#xff0c;黄冈中学公布了2019年黄冈中学的高考成绩&#xff0c;如下图所示&#xff0c;今年黄冈中学的高考成绩相比2018年略有提高。 全校参考总人数共883人&#xf…

Paper | Densely Connected Convolutional Networks

目录 黄高老师190919在北航的报告听后感故事背景网络结构 Dense blockDenseNet 过渡层成长率瓶颈层细节实验 发表在2017 CVPR。 摘要 Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain…

黄冈中学2021高考成绩查询,清华公布2021丘班录取名单,黄冈中学表现尴尬,衡中无人上榜...

每个学生心中都有个清华和北大梦&#xff0c;只不过后来发现自己能力有限&#xff0c;清华北大更是遥不可及&#xff0c;学生眼下的想法只是纠结能不能考上重点大学&#xff0c;但是这也并不妨碍大家对名牌院校的好奇心。 清华大学一直是理科学生梦寐以求的高等学府&#xff0c…

清华商汤上海AICUHK提出Siamese Image Modeling,兼具linear probing和密集预测性能!...

关注公众号&#xff0c;发现CV技术之美 本文分享论文『Siamese Image Modeling for Self-Supervised Vision Representation Learning』&#xff0c;由清华&#xff08;黄高组&#xff09;&商汤&#xff08;代季峰组&#xff09;&上海AI Lab&CUHK提出Siamese Image…