在大数据时代,洞察「用户画像」是精准营销的基础和前提。它可以给出一个用户的信息全貌,为品牌精准快速地分析用户行为习惯、消费习惯并制定精准营销计划提供坚实的数据和信息基础。
那么,品牌该如何构建精准的用户画像,从而实现精准营销?
用户画像制作的核心就在于给用户「打标签」,如年龄、性别、地域、用户偏好等。每一个标签通常是人为规定的特征标识,用高度精炼的特征描述一类人。
一个不断动态变化和优化画像模型的过程,主要可以拆分为以下几步:
01
沉淀全域用户数据,统一管理视角
以 X 新锐品牌为例,伴随着全渠道业务发展,逐步拓展了丰富的线上线下营销获客渠道。但是跨渠道业务数据分散,客户行为数据、经营数据散落在不同平台,无法有效跟踪分析用户行为及消费偏好,难以赋能业务增长。
在 Whale 帷幄「CDP」客户数据平台中,品牌可以快速接入整合来自线上线下以及企业内部的海量用户数据,对数据进行清洗和结构化存储,真正助力品牌打破数据壁垒、沉淀宝贵的用户数据资产,为后续用户标签体系建设和业务策略调整提供支撑。
02
One-ID,完成全面刻画
当品牌拥有了全域的用户数据后,又将面临「同一个用户在不同业务渠道中拥有不同 ID」的情况,就无法避免重复营销影响用户体验。而通过「CDP」客户数据平台对用户数据进行去重治理,自动根据用户的属性字段进行 One-ID 归一操作,便可以将同一用户在不同渠道的行为轨迹进行合并,完成对用户的全面数据刻画。
03
建立全方位标签体系,轻松构建画像
某知名玩具品牌私域沉淀了 30w+ 会员,却无法识别用户来源,也不清楚哪些是高价值用户,哪些是高潜力可培养用户,哪些是流失用户。在信息混沌的状态下,该玩具品牌曾长期无差别的向用户触达内容和活动,导致会员留存和转化效果不佳。
而当品牌通过 CDP 完成基础数据治理后,通过标签画像找到目标人群,精准营销也会事半功倍!
一方面,品牌可以根据不同部门的运营需求与渠道来源等划分标准,如人口基本属性、品牌沟通互动情况、消费偏好模型、用户来源等维度搭建完整标签体系来实现用户分层。
另一方面,过去品牌大都依赖于人工手动打标签,并且标签没有统一的逻辑与规则,不同渠道的标签定义不尽相同,难以真正有效赋能业务增长。
而现在,通过 CDP 预设标签规则就能实现全域用户自动打标签,利用这些用户数据做归类管理,帮助品牌为每一个用户建立「档案」。并用标签的形式总结用户的兴趣及偏好,形成日益完善的用户标签管理系统,构建和完善用户画像模型。
这些详尽的用户画像标签体系也为品牌后续自动化营销打下了坚实基础,品牌可以通过更加细分的渠道、场景以及产品购买偏好,来精准触达消费者,从而实现大规模个性化沟通。