大模型技术实践(一)|ChatGLM2-6B基于UCloud UK8S的创新应用

近半年来,通过对多款主流大语言模型进行了调研,我们针对其训练方法和模型特点进行逐一分析,方便大家更加深入了解和使用大模型。本文将重点分享ChatGLM2-6B基于UCloud云平台的UK8S实践应用。

 

01各模型结构及特点


自从2017年6月谷歌推出Transformer以来,它已经成为自然语言处理领域的重要里程碑和核心模型之一。从2018年至今推出的主流模型GPT、BERT、T5、ChatGLM、LLaMA系列模型,都是以Transformer为基本架构实现的。


BERT

使用了Transformer中Encoder编码器。

特点:

1. 双向注意力,也就是说每个时刻的Attention计算都能够得到全部时刻的输入,可同时感知上下文。

2. 适合文本理解,但不适合生成任务。


GPT

使用Transformer中Decoder解码器。

特点:

1. 单向注意力,无法利用下文信息。

2. 适合文本生成领域。


T5

采用Transformer的Encoder-Decoder结构。

改动:

1. 移除了层归一化的偏置项。

2. 将层归一化放置在残差路径之外。

3. 使用了相对位置编码,且是加在Encoder中第一个自注意力的Query和Key乘积之后。

特点:

1. 编码器的注意力是双向的,解码器的注意力是单向的,所以可以同时胜任理解和生成任务。

2. 参数量大。


LLaMA

使用Transformer中Decoder解码器。

改动:

1. 预归一化。对每个Transformer子层的输入进行规范化,而不是对输出进行规范化。

2. SwiGLU激活函数。采用SwiGLU激活函数替换了ReLU。

3. 旋转嵌入。删除了绝对位置嵌入,而在网络的每一层增加了旋转位置嵌入。

特点:

1. LLaMA-13B比GPT-3(参数量为175B)小10倍,但在大多数基准测试中都超过了GPT-3。

2. 没有将中文语料加入预训练,LLaMA在中文上的效果很弱。


ChatGLM

ChatGLM是基于GLM-130B训练得到的对话机器人。GLM使用了一个单独的Transformer。

改动:

1. 自定义Mask矩阵。

2. 重新排列了层归一化和残差连接的顺序。

3. 对于输出的预测标记,使用了一个单独的线性层。

4. 将ReLU激活函数替换为GeLU函数。

5. 二维位置编码。

特点:

通过Mask矩阵,GLM把BERT、GPT、T5这3个模型优点结合起来:

0a9a6f6f8ad6189f6dee9aad657bb5ea.jpeg


1. 当整个的文本被Mask时,空白填充任务等价于无条件语言生成任务。

2. 当被掩码的片段长度为1时,空白填充任务等价于掩码语言建模任务。

3. 当文本1和文本2拼接在一起时,再将文本2掩码掉,空白填充任务等价于有条件语言生成任务。


随机从一个参数为3的泊松分布中采样片段的长度,直到至少遮盖了原始Token的15%。然后在文本中随机排布填空片段的位置,如Part B所示。另外,Position 1表示的是Mask后的文本中的位置,Position 2表示的是在Mask内部的相对位置。


02训练方法及训练目标

各大语言模型的训练基本都是基于大规模无标签语料来训练初始的语言模型,再利用下游任务的有标签训练语料,进行微调训练。


BERT

BERT使用了Transformer的Encoder作为Block,既参考了ELMo模型的双向编码思想,参考了GPT用Transformer作为特征提取器的方法,又参考了 Word2Vec所使用的CBOW方法。

BERT的训练方法

分为两个阶段,分别是多任务训练目标的预训练阶段和基于有标签语料的微调阶段。

BERT的预训练目标

• 掩码语言模型:Masked Language Model(MLM),目的是提高模型的语义理解能力,即对文本进行随机掩码,然后预测被掩码的词。

• 下句预测:Next Sentence Prediction(NSP),目的是训练句子之间的理解能力,即预测输入语句对(A,B)中,句子B是否为句子A的下一句。


T5

T5模型采用Transformer的Encoder和Decoder,把各种NLP任务都视为Text-to-Text任务。

T5的训练方法

同样采用了预训练和微调的训练策略。

T5模型采用了两个阶段的训练:Encoder-Decoder Pretraining(编码器-解码器预训练)和 Denoising Autoencoder Pretraining(去噪自编码器预训练)。

  • 在Encoder-Decoder Pretraining阶段,T5模型通过将输入序列部分遮盖(用特殊的占位符替换)然后让模型预测被遮盖掉的词或片段。这可以帮助模型学习到上下文理解和生成的能力。

  • 在Denoising Autoencoder Pretraining阶段,T5模型通过将输入序列部分加入噪声或随机置换,然后将模型训练为还原原始输入序列。这可以增强模型对输入的鲁棒性和理解能力。


T5的预训练目标

类似BERT的MLM。T5中可Mask连续多个Token,让模型预测出被Mask掉的Token到底有几个,并且是什么。

c63514aec46171a24b145e0b09130b19.jpeg


GPT

GPT采用两阶段式训练方法

第一阶段:在没有标注的数据集中进行预训练,得到预训练语言模型。

第二阶段:在有标注的下游任务上进行微调。(有监督任务上进行了实验,包括自然语言推理、问答、语义相似度和文本分类等。)

除了常规的有监督微调,引入RLHF(人类反馈强化学习)之后,还需要:

  • 收集数据并训练奖励模型。

  • 使用强化学习对语言模型进行微调。

GPT的训练目标

是从左到右的文本生成,无条件生成。


GPT2

  • 在无Finetune的Zero-Shot场景下进行,也就是“无监督,多任务”。

  • 在原始Input上加入任务相关Prompt,无需微调也可做任务。

 

GPT3

  • 2020年5月模型参数规模增加到1750亿,大力出奇迹,预训练后不需要微调。

  • 提出了In-Context Learning。

  • 2020年9月,GPT3引入RLHF。

  • 2022年3月的OpenAI发布InstructGPT,也就是GPT3+Instruction Tuning+RLHF+PPO。


GPT4

2023年3月,GPT4支持图片形式输入。


LLaMA

训练一系列语言模型,使用的更多的Token进行训练,在不同的推理预算下达到最佳的性能。

模型参数包括从7B到65B等多个版本:

a220b20667271de592e32e45efc60625.jpeg


LLaMA的训练方法

  • 无监督预训练。

  • 有监督微调,训练奖励模型,根据人类反馈进行强化学习。

LLaMA的任务

零样本和少样本任务,并在总共20个基准测试上报告了结果:

  • 零样本。提供任务的文本描述和一个测试示例。模型要么通过开放式生成提供答案,要么对提出的答案进行排名。

  • 少样本。提供任务的几个示例(1到64个)和一个测试示例。模型将这个文本作为输入,并生成答案或对不同选项进行排名。

LlaMA2相比于LLaMA

1. 支持更长的上下文,是LLaMA的2倍。

2. 提出Grouped-Query Attention,加速推理。

3. 提出Ghost Attention让多回合对话前后一致。


ChatGLM

对话机器人ChatGLM是基于GLM-130B模型训练得到的。结合模型量化技术,得到可在普通显卡部署的ChatGLM-6B。

GLM的预训练目标

  • 文档级别的目标:从原始本文长度的50%到100%之间均匀分布的范围中进行抽样,得到片段。该目标旨在生成较长的文本。

  • 句子级别的目标:限制被Mask的片段必须是完整的句子。抽样多个片段(句子)来覆盖原始Tokens的15%。该目标旨在用于Seq2seq任务,其中预测通常是完整的句子或段落。

 ChatGLM的训练方法

无标签预训练,有监督微调、反馈自助、人类反馈强化学习等技术。


 大语言模型小结

大语言模型的训练方式基本是海量无标签数据预训练,下游再用有标签数据微调。从GPT3开始,ChatGLM、LLaMA系列模型也都引入了基于人类反馈的强化学习,让模型与人类偏好对齐,这是一个很酷的想法。


03ChatGLM2-6B在K8S上的实践


获取项目代码和模型文件,相关链接如下

(https://github.com/THUDM/ChatGLM2-6B/tree/main)

基于UCloud云平台的K8S实践

可参照UCloud文档中心(https://docs.ucloud.cn),登录UCloud控制台(https://console.ucloud.cn/uhost/uhost/create),创建UFS、创建UK8S。


创建文件存储UFS

先创建文件系统,将模型文件存储到UFS中,之后记得添加挂载点。

c1f9885902a1a9e61e97330775299e50.jpeg


这是可选项,UFS优点是可多节点挂载。如果不使用UFS,模型文件可放在其他位置,需要在后续的ufspod.yml文件中做相应修改。


创建容器云UK8S

首选创建集群:

b69a0b3ede7e90786554aa2c8ae4150e.jpeg


可自由选择Node节点到配置:

4ad2e9bed356d74cc9d734618bf090a4.jpeg


创建好了之后,界面如下:

efa6527f8630c63f934c15ec228e9bc3.jpeg


接下来可点击右侧的“详情”按钮,在跳转到的新页面左侧,点击“外网凭证”对应行的“查看”,可以看到如下图所示:

3babc043ed760a5c67d35f87cacc3090.jpeg


根据提示,保存文本内容到~/.kube/config文件中。


在UK8S中的Node节点:

  • 安装Docker

  • 安装英伟达GPU驱动

  • 安装NVIDIA Container Toolkit


在UK8S中使用UFS

根据在UK8S中使用UFS(https://docs.ucloud.cn/uk8s/volume/ufs?id=在uk8s中使用ufs)的文档说明,创建PV和PVC。

 登录UK8S的Node节点

首先参照文档安装及配置Kubectl(https://docs.ucloud.cn/uk8s/manageviakubectl/connectviakubectl?id=安装及配置kubectl)。


1. 先放上配置文件Ufspod.yml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: myfrontend
spec:
  selector:
    matchLabels:
      app: myfrontend
  replicas: 1
  template:
    metadata:
      labels:
        app: myfrontend
    spec:
      containers:
        - name: myfrontend
          image: uhub.service.ucloud.cn/yaoxl/chatglm2-6b:y1
          volumeMounts:
            - mountPath: "/app/models"
              name: mypd
          ports:
            - containerPort: 7861
      volumes:
        - name: mypd
          persistentVolumeClaim:
            claimName: ufsclaim
---
apiVersion: v1
kind: Service
metadata:
  name: myufsservice
spec:
  selector:
    app: myfrontend
  type: NodePort
  ports:
    - name: http
      protocol: TCP
      port: 7861
      targetPort: 7861
      nodePort: 30619


2. 执行配置文件Ufspod.yml

kubectl apply -f ufspod.yml


3. 进入Pod

首先通过命令得到Pod Name:

kubectl get po
#NAME               READY   STATUS    RESTARTS   AGE
#myfrontend-5488576cb-b2wqw   1/1     Running   0          83m


在Pod内部启动一个Bash Shell:

kubectl exec -it <pod_name> -- /bin/bash


4.&nbsp;打开网页版的Demo

执行:

python3 web_demo.py


得到:

4805b0493e945204ae3c141ee260cdd5.jpeg


UCloud将持续关注大语言模型的发展,并在后续发布有关LlaMA2实践、LangChain构建云上推理环境等方面的文章。欢迎大家保持关注并与我们进行更多交流探讨!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/94293.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NFTScan NFT API 在 DID Protocol 开发中的应用

自互联网发展以来&#xff0c;Web2.0 时代产生了网络社会&#xff0c;社会已经不再局限于地理边界&#xff0c;而 Web 3.0 引入了去中心化的理念&#xff0c;强调个体数据隐私和可信互操作性。在这个新的时代中&#xff0c;去中心化身份&#xff08;Decentralized Identifier 即…

vue3+vite配置vantUI主题

❓在项目中统一配置UI主题色&#xff0c;各个组件配色统一修改 vantUI按需安装 参考vantUI文档 创建vantVar.less文件夹进行样式编写 vantVar.less :root:root{//导航--van-nav-bar-height: 44px;//按钮--van-button-primary-color: #ffffff;--van-button-primary-backgr…

【Rust】Rust学习 第十一章编写自动化测试

Rust 是一个相当注重正确性的编程语言&#xff0c;不过正确性是一个难以证明的复杂主题。Rust 的类型系统在此问题上下了很大的功夫&#xff0c;不过它不可能捕获所有种类的错误。为此&#xff0c;Rust 也在语言本身包含了编写软件测试的支持。 编写一个叫做 add_two 的将传递…

FFmpeg 硬编码VideoToolBox流程

介绍 FFmpeg已经提供对 VideoToolBox 的编解码支持&#xff1b;主要涉及到的文件有videotoolbox.c、videotoolbox.h、videotoolboxenc.c、ffmepg_videotoolbox.c。在编译 FFmpeg 源码时&#xff0c;想要支持VideoToolBox&#xff0c;在 configure 时&#xff0c;需要–enable-…

激活函数总结(十一):激活函数补充(Absolute、Bipolar、Bipolar Sigmoid)

激活函数总结&#xff08;十一&#xff09;&#xff1a;激活函数补充 1 引言2 激活函数2.1 Absolute激活函数2.2 Bipolar激活函数2.3 Bipolar Sigmoid激活函数 3. 总结 1 引言 在前面的文章中已经介绍了介绍了一系列激活函数 (Sigmoid、Tanh、ReLU、Leaky ReLU、PReLU、Swish、…

第十三章 SpringBoot项目(总)

1.创建SpringBoot项目 1.1.设置编码 1.4.导入已有的spring boot项目 2.快速搭建Restfull风格的项目 2.1.返回字符串 RestController public class IndexController {RequestMapping("/demo1")public Object demo1() {System.out.println("demo1 ran...."…

2022年12月 C/C++(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题:数组逆序重放 将一个数组中的值按逆序重新存放。例如,原来的顺序为8,6,5,4,1。要求改为1,4,5,6,8。 输入 输入为两行:第一行数组中元素的个数n(1 输出 输出为一行:输出逆序后数组的整数,每两个整数之间用空格分隔。 样例输入 5 8 6 5 4 1 样例输出 1 4 5 6 8 以下是…

网络安全--linux下Nginx安装以及docker验证标签漏洞

目录 一、Nginx安装 二、docker验证标签漏洞 一、Nginx安装 1.首先创建Nginx的目录并进入&#xff1a; mkdir /soft && mkdir /soft/nginx/cd /soft/nginx/ 2.下载Nginx的安装包&#xff0c;可以通过FTP工具上传离线环境包&#xff0c;也可通过wget命令在线获取安装包…

Linux:shell脚本:基础使用(5)《正则表达式-sed工具》

sed是一种流编辑器&#xff0c;它是文本处理中非常中的工具&#xff0c;能够完美的配合正则表达式使用&#xff0c;功能不同凡响。 处理时&#xff0c;把当前处理的行存储在临时缓冲区中&#xff0c;称为“模式空间”&#xff08;pattern space&#xff09;&#xff0c;接着用s…

深入篇【C++】手搓模拟实现二叉搜索树(递归/非递归版本)常见应用场景(K模型与KV模型)

深入篇【C】手搓模拟实现二叉搜索树(递归/非递归版本&#xff09;&&常见应用场景 Ⅰ.二叉搜索树概念Ⅱ.二叉搜索树模拟实现(递归与非递归)①.定义结点②.构造二叉树③.插入结点④.删除结点(重要)⑤.查找结点⑥.析构二叉树⑦.拷贝二叉树⑧.二叉树赋值 Ⅲ.二叉搜索树应用…

SpringBoot复习:(48)RedisAutoConfiguration自动配置类

RedisAutoConfiguration类代码如下&#xff1a; 可以看到在这个类中配置了2个bean: redisTemplate和stringRedisTemplate. 而它通过EnableConfigurationProperties(RedisProperties.class)注解&#xff0c;把配置文件中配置的Redis相关的信息引入进来了&#xff0c;RedisPrope…

元素在div中水平居中

先看一下行级元素在div中水平居中&#xff1b; <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>div demo </title> <style> body {background-color:#d0e4fe; }</style> </head><body>&…

使用css实现时间线布局(TimeLine)

前言 在使用uni-app开发微信小程序过程中&#xff0c;遇到了时间轴布局&#xff0c;由于每项的内容高度不一致&#xff0c;使用uniapp自带的扩展组件uni-steps&#xff0c;样式布局无法对齐竖线&#xff0c;于是自己造轮子&#xff0c;完成特殊的布局。显示效果如下&#xff1…

71 # 协商缓存的配置:通过内容

对比&#xff08;协商&#xff09;缓存 比较一下再去决定是用缓存还是重新获取数据&#xff0c;这样会减少网络请求&#xff0c;提高性能。 对比缓存的工作原理 客户端第一次请求服务器的时候&#xff0c;服务器会把数据进行缓存&#xff0c;同时会生成一个缓存标识符&#…

day12 13-牛客67道剑指offer-JZ83、70、63、47、48、46、21、81

1. JZ83 剪绳子&#xff08;进阶版&#xff09; class Solution { public:int jumpFloorII(int number) {if(number < 1) return number;int temp 1;int res 0;/*2级台阶 23级台阶 44级台阶 65级台阶 16*/for(int i2; i<number; i){res 2 * temp;temp res;}return re…

docker 安装elasticsearch、kibana

下载es镜像 docker pull elasticsearch 启动es容器 docker run --name elasticsearch -p 9200:9200 -p 9300:9300 -e "discovery.typesingle-node" -e ES_JAVA_OPTS"-Xms512m -Xmx512m" -d elasticsearch 验证es界面访问 ​​​​​http://节点ip:9200/ ​…

应用在汽车前照灯系统中的环境光传感芯片

为了保证行车照明的安全性和方便性&#xff0c;减轻驾驶员的劳动强度。近年来&#xff0c;出现了许多新的照明控制系统&#xff0c;例如用于日间驾驶的自动照明系统、光束调节系统、延迟控制等。尤其是汽车自适应前照灯系统&#xff0c;它是一种能够自动改变两种以上的光型以适…

零售行业供应链管理核心KPI指标(一) – 能力、速度、效率和成本

有关零售行业供应链管理KPI指标的综合性分享&#xff0c;涉及到供应链能力、速度、效率和成本总共九大指标&#xff0c;是一个大框架&#xff0c;比较核心也比较综合。 衡量消费品零售企业供应链管理效率和水平的核心KPI通常有哪些&#xff1f; 图片来源-派可数据&#xff08;…

SpringBoot 操作Redis、创建Redis文件夹、遍历Redis文件夹

文章目录 前言依赖连接 RedisRedis 配置文件Redis 工具类操作 Redis创建 Redis 文件夹查询数据遍历 Redis 文件夹 前言 Redis 是一种高性能的键值存储数据库&#xff0c;支持网络、可基于内存亦可持久化的日志型&#xff0c;而 Spring Boot 是一个简化了开发过程的 Java 框架。…

【ES6】—解构赋值

一、定义 解构赋值&#xff1a;解构赋值就是一种模式的匹配&#xff0c;只要等号两边的模式完全相同的&#xff0c;那么左边的变量就会被赋值对应右边的值 二、数组的解构赋值 PS&#xff1a;数组解构赋值时&#xff0c;是通过索引的唯一性赋值的 1. 一维数组解构赋值 (1)…