回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/97962.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

redis 存储结构原理 2

咱们接着上一部分来进行分享,我们可以在如下地址下载 redis 的源码: https://redis.io/download 此处我下载的是 redis-6.2.5 版本的,xdm 可以直接下载上图中的 **redis-6.2.6 **版本, redis 中 hash 表的数据结构 redis hash …

RFID技术助力汽车零配件装配产线,提升效率与准确性

随着科技的不断发展,越来越多的自动化设备被应用到汽车零配件装配产线中。其中,射频识别(Radio Frequency Identification,简称RFID)技术凭借其独特的优势,已经成为了这一领域的重要技术之一。本文将介绍RF…

redis乐观锁+启用事务解决超卖

乐观锁用于监视库存(watch),然后接下来就启用事务。 启用事务,将减库存、下单这两个步骤,放到一个事务当中即可解决秒杀问题、防止超卖。 但是!!!乐观锁,会带来" …

C++运算符重载

C运算符重载 C运算符重载:使对象的运算表现得和编译器内置类型一样。 C实现复数类实现运算符重载 C类对象操作符重载函数函数时,会优先调用类的成员方法,没有找到再去全局去寻找对应的方法。 在调用某些操作符重载函数时,如果…

创建密码库/创建用户帐户/更新 Ansible 库的密钥/ 配置cron作业

目录 创建密码库 创建用户帐户 更新 Ansible 库的密钥 配置cron作业 创建密码库 按照下方所述,创建一个 Ansible 库来存储用户密码: 库名称为 /home/curtis/ansible/locker.yml 库中含有两个变量,名称如下: pw_developer&#…

YOLOv5、YOLOv8改进:S2注意力机制

目录 1.简介 2.YOLOv5改进 2.1增加以下S2-MLPv2.yaml文件 2.2common.py配置 2.3yolo.py配置 1.简介 S2-MLPv2注意力机制 最近,出现了基于 MLP 的视觉主干。与 CNN 和视觉Transformer相比,基于 MLP 的视觉架构具有较少的归纳偏差,在图像识…

中国剩余定理及扩展

目录 中国剩余定理解释 中国剩余定理扩展——求解模数不互质情况下的线性方程组: 代码实现: 互质: 非互质: 中国剩余定理解释 在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二&#x…

go es实例

go es实例 1、下载第三方库 go get github.com/olivere/elastic下载过程中出现如下报错: 解决方案: 2、示例 import package mainimport ("context""encoding/json""fmt""reflect""time""…

【前端】快速掌握HTML+CSS核心知识点

文章目录 1.HTML核心基础知识1.1.编写第一个HTML网页1.2.超链接a标签和路径1.3.图像img标签的用法1.4.表格table标签用法1.5.列表ul、ol、dl标签用法1.6.表单form标签用法1.7.区块标签和行内标签用法 2.CSS核心基础知识2.1.CSS标签选择器viewport布局2.2.CSS样式的几种写法2.3.…

【Linux取经路】解析环境变量,提升系统控制力

文章目录 一、进程优先级1.1 什么是优先级?1.2 为什么会有优先级?1.3 小结 二、Linux系统中的优先级2.1 查看进程优先级2.2 PRI and NI2.3 修改进程优先级2.4 进程优先级的实现原理2.5 一些名词解释 三、环境变量3.1 基本概念3.2 PATH:Linux系…

k8s 常见面试题

前段时间在这个视频中分享了 https://github.com/bregman-arie/devops-exercises 这个知识仓库。 这次继续分享里面的内容,本次主要以 k8s 相关的问题为主。 k8s 是什么,为什么企业选择使用它 k8s 是一个开源应用,给用户提供了管理、部署、扩…

Learning to Super-resolve Dynamic Scenes for Neuromorphic Spike Camera论文笔记

摘要 脉冲相机使用了“integrate and fire”机制来生成连续的脉冲流,以极高的时间分辨率来记录动态光照强度。但是极高的时间分辨率导致了受限的空间分辨率,致使重建出的图像无法很好保留原始场景的细节。为了解决这个问题,这篇文章提出了Sp…

idea2023 springboot2.7.5+mybatisplus3.5.2+jsp 初学单表增删改查

创建项目 修改pom.xml 为2.7.5 引入mybatisplus 2.1 修改pom.xml <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.2</version></dependency><!--mysq…

【STM32 学习】电源解析(VCC、VDD、VREF+、VBAT)

VCC电源电压GND电源供电负电压&#xff08;通常接地&#xff09;VDD模块工作正电压VSS模块工作负电压VREFADC参考正电压VREF-ADC参考负电压VBAT电池或其他电源供电VDDA模拟供电正电压VSSA模拟供电负电压 一、VCC&#xff08;供电电压&#xff09; VCC是指芯片的电源电压&#…

MNIST手写数字数据集+7000张图片下载

MNIST手写数字图像数据集是一个经典的用于图像分类任务的数据集&#xff0c;其中包含了大量的手写数字图像样本 数据集点击下载&#xff1a; MNIST手写数字数据集7000张图片.rar

函数栈帧理解

本文是从汇编角度来展示的函数调用&#xff0c;而且是在vs2013下根据调试展开的探究&#xff0c;其它平台在一些指令上会有点不同&#xff0c;指令不多&#xff0c;简单记忆一下即可&#xff0c;在我前些年的学习中&#xff0c;学的这几句汇编指令对我调试找错误起了不小的作用…

【令牌桶算法与漏桶算法】

&#x1f4a7; 令牌桶算法与漏桶算法 \color{#FF1493}{令牌桶算法与漏桶算法} 令牌桶算法与漏桶算法&#x1f4a7; &#x1f337; 仰望天空&#xff0c;妳我亦是行人.✨ &#x1f984; 个人主页——微风撞见云的博客&#x1f390; &#x1f433; 《数据结构与算法》专…

【前端|JS实战第1篇】使用JS来实现属于自己的贪吃蛇游戏!

前言 贪吃蛇游戏是经典的小游戏&#xff0c;也是学习前端JS的一个很好的练习项目。在本教程中&#xff0c;我们将使用 JavaScript 来逐步构建一个贪吃蛇游戏。我们会从创建游戏区域开始&#xff0c;逐步添加蛇的移动、食物的生成以及游戏逻辑等功能。 &#x1f680; 作者简介&a…

韦东山-电子量产工具项目:业务系统

代码结构 所有代码都已通过测试跑通&#xff0c;其中代码结构如下&#xff1a; 一、include文件夹 1.1 common.h #ifndef _COMMON_H #define _COMMON_Htypedef struct Region {int iLeftUpX; //区域左上方的坐标int iLeftUpY; //区域左下方的坐标int iWidth; //区域宽…

java八股文面试[java基础]——String StringBuilder StringBuffer

String类型定义&#xff1a; final String 不可以继承 final char [] 不可以修改 String不可变的好处&#xff1a; hash值只需要算一次&#xff0c;当String作为map的key时&#xff0c; 不需要考虑hash改变 天然的线程安全 知识来源&#xff1a; 【基础】String、StringB…