Halcon阈值处理的几种分割方法threshold/auto_threshold/binary_threshold/dyn_threshold

Halcon阈值处理的几种分割方法

文章目录

  • Halcon阈值处理的几种分割方法
    • 1. 全局阈值
    • 2. 基于直方图的自动阈值分割方法
    • 3. 自动全局阈值分割方法
    • 4. 局部阈值分割方法
    • 5. var_threshold算子
    • 6 . char_threshold 算子
    • 7. dual_threshold算子

在场景中选择物体或特征是图像测量或识别的重要基础,而阈值处理是最简单也最常用的区域
选择方法,特别适用于目标和背景的灰度有明显区别的情况。下面就介绍几种常用的阈值处理方法。

1. 全局阈值

首先来看什么是阈值。简单来说,闽值就是一个指定的像素灰度值的范围。假设阈值为0~255灰度值,阈值处理就是将图像中的像素灰度值与该阈值进行比较,落在该范围内的像素称为前景,其余的像素称为背景。一般会用黑白两色来表示前景与背景。这样图像就变成了只有黑与白两种颜色的二值图像。
当检测对象的图像灰度与背景差异比较大时,用阈值处理可以很方便地将其与背景分离开来。根据像素与相邻像素之间的灰度值差异设置一个阈值,可以将像素与其相邻像素分隔开来。如果是在图像边缘,可以利用边缘的灰度差值进行简单的阈值处理,有助于沿边界分割图像。在Halcon中,可使用threshold算子进行全局阈值处理。举例如下:

read_image (Image,'data/codes')
rgbl_to_gray (Image, GrayImage)
threshold (GrayImage, DarkArea, 0,128)

该程序的阈值处理结果如图所示,其中图(a)为输入图像,图(b)中的红色区域为阅值处理后提取出的较暗区域。
在这里插入图片描述
在上面的例子中,threshold 算子的第1个参数Graylmage 为输入图像,这里用的是灰度图;第2个参数DarkArea 为输出的区域,类型为Region;第3个和第4个参数为阀值的区间值,表示0~128 灰度范围内的像素区域。

2. 基于直方图的自动阈值分割方法

有时手动设定阈值并不是一个严谨的方法,因为人对图像灰度的感受并不精准,即使对同一场景,当光线有微妙变化时,灰度也会有差异。手动设定阈值在粗估计时可能是一个便捷的方法,但是随着后续计算步骤的叠加,将带来不可估量的误差。在连续采集的图像中,图像的灰度也是动态变化的,环境光照、拍摄角度等因素都会影响图像的灰度。如果阈值是一个固定的值,那么在处理连续图像时结果会不够准确。因此,可以使用自适应阙值进行调节。
自适应阈值是一种基于直方图的阈值。直方图是图像像素落在0~253这个区间内的数量统计图。通过直方图可以看出图像灰度的大致分布,在有些情况下甚至可以估+检测对象的面积与结构。
在Halcon 中使用auto_threshold算子进行自适应阈值处理。该算子可以对单通道图像进行多重闽值处理,其原理是,以灰度直方图中出现的谷底为分割点,对灰度直方图的波峰进行分割。因此,有多少个波峰,就会分割出多少个区域。auto_threshold 算子的第3个参数Sigma(此例中为8.0)是一个平滑算子,可以对直方图进行平滑处理。举例如下:

read_image (Image,'data/shapes')
rgbl_to_gray (Image, GrayImage)
auto_threshold(GrayImage,Regions,8.0)

该程序的阈值处理结果如图所示,其中图(a)为灰度图像,包括几种不同灰度的对象.图(b)用3种不同的颜色区分了自动阈值分割出的3个区域。其中圆形与矩形物体因为灰度值相近被分割为同一区域;三角形的灰度值与另外两种有差异,被分割为单独的区域;背景灰度值最大,也被分割为一个单独的区域。
在这里插入图片描述
auto_threshold算子的前两个参数分别为输入的Image图像和输出的Region类型的区域。第3个参数 Sigma 为对灰度直方图进行高斯平滑的核的大小。高斯卷积运算,其计算原理是,先确定图像的绝对灰度直方图,然后使用高斯滤波器对该直方图进行平滑处理。在本例中,设Sigma 值为8.0,对灰度直方图的平滑效果如图所示。
在这里插入图片描述
图 (a)为原始灰度直方图,可以看出波峰比较多,如不处理将产生大量的分割区域,不利于提取出有意义的部分,因此这里将Sigma 值设得大一些,使波峰变得平滑。图(b)为Sigma为8.0时对灰度直方图进行高斯平滑后的效果,可见波峰明显减少到了3个,因此图像中自动分割的区域也减少到了3部分。
因此,Sigma的值越大,平滑效果越显著,直方图波峰越少,分割出的区域也越少;反之,Sigma的值越小,直方图平滑的效果越不明显,分割的次数也越多。同时可以使用gray_histo 算子和gen_region_histo 算子查看Sigma参数对灰度直方图的影响。

3. 自动全局阈值分割方法

除了auto_threshold算子外,还常用binary_threshold算子对直方图波峰图像进行自动阈值分割。binary_threshold 算子同样利用了直方图,但不同的是,该算子是根据直方图中的像素分布提供可选的分割方法,如使用最大类间方差法或平滑直方图法,都可以自动计算出一个灰度级别用于分割区域。
同时,该算子也可以选择提取较亮还是较暗的范围,尤其适用于在比较亮的背景图像上提取比较暗的字符。举例如下:

read_image (Image, 'data/codes')
rgbl_to_gray (Image, GrayImage)
binary threshold (GrayImage, RegionMaxSeparabilityLight, 'max _separability', 'dark', UsedThreshold)

该程序运行效果如图所示,其中图(a)为灰度图像,图(b)为使用binary _threshold算子进行阈值分割后的图像。
在这里插入图片描述
binary_threshold算子的前两个参数分别为输入和输出的对象。第3个参数为分割的方法,这个例子中选择max_separability,表示在直方图中对最大的可分性进行分割;也可以选择smooth histo,表示平滑直方图,平滑的原理与auto_threshold算子类似。第4个参数表示提取前景还是背景,这里选择dark,表示提取较暗的部分;也可以选择light,表示提取较亮的部分。最后一个参数UsedThreshold 为返回结果,将返回所用的阈值。

4. 局部阈值分割方法

上文介绍了几种全局阈值分割方法,本小节介绍一个基于局部阈值分割的dyn_threshold算子。它适用于一些无法用单一灰度进行分割的情况,如背景灰度比较复杂,有的部分比前景目标亮,有的部分比前景目标暗;又如前景目标包含多种灰度,因而无法用全局阈值完成分割。该算子利用邻域,通过局部灰度对比,找到一个合适的阈值进行分割。
dyn_threshold 算子的应用步骤一般分三步:首先,读取原始图像;然后,使用平滑滤波器对原始图像进行适当平滑;最后,使用dyn threshold算子比较原始图像与均值处理后的图像局部像素差异,将差异大于设定值的点提取出来。
举一个例子,如图(a)所示,该图中前景部分的字符颜色不均匀,无法用单一的灰度阈值进行提取,因此可以使用局部阈值分割方法进行提取。代码举例如下:

read_image (Image, Idata/text')
*将图像转换为灰度图
rgb1_to_gray (Image, GrayImage)
*由于图像对比度比较低,因此对图像进行相乘,增强对比度
mult_image (GrayImage, GrayImage, ImageResult, 0.005, 0)
*使用平滑滤波器对原始图像进行适当平滑
mean _image (ImageResult, ImageMean, 50,50)
*动态阈值分割,提取字符区域
dyn_threshold (ImageResult, ImageMean, RegionDynThresh, 4, 'not_equal')
*开运算,去除无意义的小的杂点
opening_circle (RegionDynThresh, Region0pening, 1.5)
*显示结果
dev_clear_window()
dev_display (RegionOpening)

该段代码运行效果如图所示,其中图(a)为灰度图像,图像中的字符部分颜色不均;图(b)为用dyn_threshold算子进行阈值分割后的图像。
在这里插入图片描述
再举一个使用动态阈值进行轮廓提取的例子。如图(a)所示,该图的前景与背景部分灰度都不均匀,因而无法用全局阈值进行提取,这时可以用dyn_threshold算子提取前景的轮廓。代码如下:

read_image (Image, 'data/garlic')
*将图像转换为灰度图
rgbl_to_gray (Image, GrayImage)
*使用平滑滤波器对原始图像进行适当平滑
mean_image (GrayImage, ImageMean, 30,30)
*动态阈值分割,提取字符区域
dyn_threshold (GrayImage, ImageMean, RegionDynThresh, 30, 'not_equal')
*腐蚀操作,去除杂点
erosion_circle (RegionDynThresh, RegionClosing, 1.5)

该段代码运行效果如图所示,其中图(a)为灰度图像,前景目标灰度复杂,背景因为光
照不均匀,局部甚至比前景目标更亮;图(b)为使用dyn_threshold算子进行阈值分割后的图像。
在这里插入图片描述
dyn_threshold算子的第1个参数为输入的灰度图像。第2个参数为输入的预处理图像,这里食用Mean_Image得到了一张均值图像,用于做局部灰度对比。第3个参数为输出的阈值区域。第。个参数是offset值,是将原图与均值图像作对比后设定的值,灰度差异大于该值的将被提取出来第5个参数决定了提取的是哪部分区域,一般有如下4个选择。
(1)light:表示原图中大于等于预处理图像像素点值加上offset值的像素被选中。
(2)dark:表示原图中小于等于预处理图像像素点值减去offset 值的像素被选中。
(3)equal:表示原图中像素点大于预处理图像像素点值减去offset值,小于预处理图像像素点值加上offset 值的点被选中。
(4)not_equal:表示与equal相反,它的提取范围在equal范围以外。
该算子适用于在复杂背景下提取前景目标的轮廓,或无法用单一灰度阈值提取边缘等情况。注意
实际应用中可以根据图像的灰度值,设置均值滤波器的系数和动态阙值的参数。

5. var_threshold算子

除了dyn threshold算子可以利用局部像素灰度差进行分割外,var_threshold算子也是一种基于局部动态阈值的分割方法。该方法分割的依据是局部的均值和标准差,选择图像中邻域像素满足阈值条件的区域进行分割。该阈值不是一个固定的值,而是在点(x,))的邻域中使用矩形mask进行扫描,分别用点(x,y)的灰度与均值图像中的点(x,y)的灰度,和矩形的中心点的标准差灰度进行比较。该矩形 mask的长宽需要是奇数,这样便于找到矩形的中心点,其具体的宽和高应该略大于待分割的图像区域。举例如下:

read _image (Image,'data/holes')rgbl _to_gray (Image, GrayImage)*设置矩形,选择感兴趣区域
gen_rectanglel (Rectangle, 170, 80, 370, 510)
reduce_domain (GrayImage, Rectangle, ImageReduced)
var _threshold (ImageReduced, Region, 15, 15, 0.2, 35, 'dark')

该程序的运行效果如图所示,其中图(a)为输入图像,图(b)为使用 var_threshold算子进行阈值分割后的图像,灰度变化符合阈值的区域被提取了出来。
在这里插入图片描述
该算子的第1个参数为输入的灰度图像;第2个参数为输出的阈值区域;第3个和第4个参数为用于扫描邻域的矩形 mask的宽和高;第5个参数为标准差因子,用于计算灰度标准差,默认为0.2;第6个参数为设定的绝对阈值,该值用于比较矩形区域内的灰度标准差与均值图像的最小灰度值;第7个参数决定了提取的是哪部分区域,一般有4个选择,即dark、light、equal、not_equal,具体解释与dyn_threshold算子相同。

6 . char_threshold 算子

核算子一般用来提取字符,适用于在明亮的背景上提取黑暗的字符。该算子的运算过程如下:首先计算一个灰度曲线;然后给定一个Sigma值,用于平滑这个曲线;最后将前景与背景区分开来。分割的阈值取决于直方图中的最大值。例如,如果选择百分比为95%,灰度阈值将锁定在距离直方图峰值的5%左右的区域,因为这个算子假定的是字符的灰度都暗于背景。举例如下:

read_ image (Char, 'data/char')
rgbl_to_gray (Char, GrayImage)
char_threshold (GrayImage, GrayImage, Characters, 6, 95, Threshold)

该程序的运行效果如图所示,其中图(a)为灰度图像,图(b)为使用char_threshold算子进行阈值分割后的图。
在这里插入图片描述
与binary_threshold 算子相比,char_threshold算子适用于直方图的波峰之间没有明确的谷底的情况,或者是直方图没有明确的峰值的情况。这种情况是可能出现的,如图像中只包含几个字符,或者是存在不规则光照。

7. dual_threshold算子

该算子表示双阈值处理,其原型如下:
dual threshold(Image : RegionCrossings : MinSize, MinGray, Threshold 😃
该定义来自Halcon官方文档。其第1个参数为输入图像,第2个参数为阈值处理的输出区域,第3个参数为分割出的区域的最小面积,第4个参数为区域的灰度下限,第5个参数为灰度阈值Threshold。该阈值处理可以看作是对两个方向进行了阈值分割,不但提取出了灰度大于等于Threshold 值的范围,也提取出了小于等于-Threshold值的范围。
之所以会有负的灰度值,是因为dual threshold算子在处理之前一般会先对原始图像进行拉普拉斯操作,输入的图像一般是拉普拉斯图像,这类图像包含正的和负的灰度值的区域。
满足灰度阈值并符合面积条件,同时还满足最小灰度条件的区域将最终被分割出来。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/231301.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在宝塔Linux中安装Docker

前言 帮助使用宝塔的用户快速上手docke的安装 📚📚 🏅我是默,一个在CSDN分享笔记的博主。📚📚 ​​​​ 🌟在这里,我要推荐给大家我的专栏《Docker》。🎯&#x1f3af…

图片上的水印怎么添加?简单易上手的3个方法

图片上的水印怎么添加?水印是一种透明的文字或图像叠加在原始图片上的技术。它能够涵盖版权信息、公司商标、作者名字或其他个人标识。很多人会通过添加水印的方法,来确保图片在分享或者是公开使用的时候,依然能够保留对自己原创内容的控制和…

【python入门】day19:学生管理系统需求分析、系统设计、主函数设计

需求分析 应具备功能—— 添加学生及成绩信息; 将学生信息保存到文件中; 修改和删除学生信息; 查询学生信息; 根据学生成绩进行排序; 统计学生的总分 系统设计 1.录入学生信息模块 2.查找 3.删除 4.修改 5.成绩排名…

Django 6 后台与便签

1. 什么是后台管理 后台管理是网页管理员利用网页的后台程序管理和更新网站上网页的内容。各网站里网页内容更新就是通过网站管理员通过后台管理更新的。 2. 创建超级用户 1. python .\manage.py createsuperuser 2. 输入账号密码等信息 Username (leave blank to use syl…

Springboot整合RocketMQ 基本消息处理

目录 1. 同步消息 2. 异步消息 3. 单向消息 4. 延迟消息 5. 批量消息 6. 顺序消息 7. Tag过滤 导入依赖 <dependency><groupId>org.apache.rocketmq</groupId><artifactId>rocketmq-spring-boot-starter</artifactId></dependency> …

目标检测-One Stage-SSD

文章目录 前言一、SSD的网络结构和流程二、SSD的创新点总结 前言 根据前文目标检测-One Stage-YOLOv1可以看出YOLOv1的主要缺点是&#xff1a; 每个格子针对目标框的回归是不加限制的&#xff0c;导致目标的定位并不是很精准和Faster RCNN等先进Two Stage算法相比&#xff0c…

2020年认证杯SPSSPRO杯数学建模C题(第一阶段)抗击疫情,我们能做什么全过程文档及程序

2020年认证杯SPSSPRO杯数学建模 C题 抗击疫情&#xff0c;我们能做什么 原题再现&#xff1a; 2020 年 3 月 12 日&#xff0c;世界卫生组织&#xff08;WHO&#xff09;宣布&#xff0c;席卷全球的冠状病毒引发的病毒性肺炎&#xff08;COVID-19&#xff09;是一种大流行病。…

打工人的2.0时代,只需要一副AR眼镜!

在数字化时代&#xff0c;工业行业中的生产效率如何得到提升&#xff1f;工业AR眼镜或许是一个不错的选择。不过工业AR眼镜真的可以协助员工处理工作中所遇到的各种问题吗&#xff1f;我们以制造业、医疗行业、船舶业的不同从业者为例&#xff1a; 假如你是一名制造业从业者&am…

Linux第4步_安装VMwareTools

安装Ubuntu操作系统后&#xff0c;就可以安装VMwareTools了&#xff0c;目的是实现“电脑和虚拟机之间互相复制粘贴文件”。 1、双击桌面图标“VMware Workstation Pro”&#xff0c;然后点击下图中的“开机”&#xff0c;打开虚拟机电源。 2、双击下图中的用户名“zgq” 3、…

解决npm,pnpm,yarn等安装electron超时等问题

我在安装electron的时候&#xff0c;出现了超时等等各种问题&#xff1a; &#xff08;RequestError: connect ETIMEDOUT 20.205.243.166:443&#xff09; npm yarn&#xff1a;Request Error: connect ETIMEDOUT 20.205.243.166:443 RequestError: socket hang up npm ER…

Kafka集群详解

Kafka介绍Kafka集群介绍Kafka集群特点Kafka集群搭建在这里插入图片描述Kafka集群如何进行故障切换Kafka集群Leader的选举Kafka集群如何快速横向拓展Kafka集群搭建最佳实践Kafka集群可以使用单节点Zookeeper吗Kafka集群的消费者信息保存在那里Kafka集群的Topic的分区数的设置规则…

LeetCode(36)有效的数独 ⭐⭐

请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 &#xff0c;验证已经填入的数字是否有效即可。 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。&#xff08;请参考示例图&#xff09; 注…

(Java基础知识综合)

进制转换&#xff1a; 其他转10 10转其他 2进制8和16 8和16转2 位运算&#xff1a; >> 除于2 <<乘以2 近似值 空心金字塔 this关键字还可以用于访问父类中的属性和方法

Java的内部类

Java的内部类 1. 什么是内部类?2. 内部类的分类2.1 成员式内部类2.1.1 成员内部类&#xff08;Member Inner Class&#xff09;2.1.2 静态内部类&#xff08;Static Nested Class&#xff09; 2.2 局部式内部类2.2.1 局部内部类&#xff08;Local Inner Class&#xff09;2.2.…

计算机网络期末复习

计算机网络复习 1.第一章 1.2.2计算机啊网络的分类(认识) 按网络的覆盖范围进行分类&#xff1a; 局域网城域网广域网个人区域网 按网络的使用者进行分类&#xff1a; 公用网专用网 1.3互联网的组成(掌握) 从功能上可以划分为以下两大部分&#xff1a; 边缘部分&#x…

Halcon算子精讲:形态学操作(圆形操作)

膨胀操作&#xff08;圆形膨胀&#xff09; 算子 dilation_circle(Region, RegionDilation, 3.5) 原理 将区域中边界的每个像素点以3.5为半径做圆&#xff0c;原有区域 所做圆区域 膨胀后区域。 作用 扩大目标所在区域或连接区域破碎部分。 对比图 腐蚀操作&#xff08;圆…

[2023-年度总结]凡是过往,皆为序章

原创/朱季谦 2023年12月初&#xff0c;傍晚&#xff0c;在深圳的小南山看了一场落日。 那晚我们坐在山顶的草地上&#xff0c;拍下了这张照片——仿佛在秋天的枝头上&#xff0c;结出一颗红透的夕阳。 这一天很快就会随着夜幕的降临&#xff0c;化作记忆的碎片&#xff0c;然…

利用 IntelliJ IDEA 整合 GitHub 实现项目版本控制与协作管理

目录 前言1 设置GitHub登录账号2 将项目分享到GitHub3 IntelliJ IDEA 中导入Github项目4 往GitHub推送代码4.1 Commit Change&#xff08;提交到本地库&#xff09;4.2 Git -> Repository -> Push&#xff08;推送到远程库&#xff09; 5 拉取远程库代码到本地6 克隆远程…

大模型应用实践:AIGC探索之旅

随着OpenAI推出ChatGPT&#xff0c;AIGC迎来了前所未有的发展机遇。大模型技术已经不仅仅是技术趋势&#xff0c;而是深刻地塑造着我们交流、工作和思考的方式。 本文介绍了笔者理解的大模型和AIGC的密切联系&#xff0c;从历史沿革到实际应用案例&#xff0c;再到面临的技术挑…

降噪自编码器(Denoising Autoencoder)

降噪自编码器&#xff08;Denoising Autoencoder&#xff09;是一种用于无监督学习的神经网络模型。与普通的自编码器不同&#xff0c;降噪自编码器的目标是通过在输入数据中引入噪声&#xff0c;然后尝试从具有噪声的输入中重建原始无噪声数据。 以下是降噪自编码器的主要特点…