实验三 Python 数据可视化 Python 聚类-K-means(CQUPT)

一、实验目的

 Python 数据可视化:

1、学习使用 jiebawordcloud 等类库生成词云图。

2、学习使用 Matplotlib 库进行数据可视化。

Python 聚类-K-means:

1、理解聚类非监督学习方法的基本原理。

2、掌握 Pythonnumpypandassklearn 实现聚类的方法。

二、实验原理

运用 Anaconda 搭建的 Spyder平台编写 Python 实例程序。

运用 Anaconda 搭建的 Spyder平台编写实例 Python K-means 聚类程序。

三、使用软件平台

1、Windows 11电脑一台。

2、Anaconda、Python、Spyder平台。

四、实验内容

实例1:简历信息词云图

结果:

代码: 

对了记得把老师的文件放在同一个文件夹下

import jieba
import imageio
from wordcloud import WordCloud
import matplotlib.pyplot as plt# 读取个人信息文件
with open("per_info.txt", "r", encoding="utf-8") as f:word_content = f.read().replace("\n", "")# 读取背景图片
mask_img = imageio.imread("china.jpg")# 分词处理
word_cut = jieba.cut(word_content)
word_cut_join = " ".join(word_cut)# 创建词云对象
wc = WordCloud(font_path="STXINGKA.ttf",  # 选择支持中文的字体mask=mask_img,  # 背景图background_color="white",  # 背景颜色max_words=500,  # 最大显示词语数max_font_size=80  # 最大字体
)# 生成词云
wc.generate(word_cut_join)# 显示词云
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.show()# 保存词云到本地
wc.to_file("personal_wordcloud.jpg")

 实例2:疫情病例数发展趋势可视化

结果:

代码:

import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParams# 设置字体为 SimHei(黑体)
rcParams['font.sans-serif'] = ['SimHei']  # 解决中文乱码
rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 读取疫情数据
data_file = "cq_COVID-19.xlsx"  
data = pd.read_excel(data_file)# 提取日期和感染人数并保存到列表
dates = pd.to_datetime(data['日期']).tolist()  # 转换为 Python 列表
cases = data['感染人数'].tolist()  # 转换为 Python 列表# 打印两个列表(仅供调试)
print("日期列表:", dates)
print("感染人数列表:", cases)# 绘制折线图
plt.figure(figsize=(12, 6))
plt.plot(dates, cases, marker='o', linestyle='-', label='感染人数')# 设置图表标题和轴标签
plt.title('重庆疫情病例数发展趋势--来自420刘清城', fontsize=16)
plt.xlabel('日期', fontsize=12)
plt.ylabel('感染人数', fontsize=12)# 美化图表
plt.grid(alpha=0.3)
plt.xticks(rotation=45)  # 日期横轴倾斜以便阅读
plt.legend()
plt.tight_layout()# 显示图表
plt.show()

实例3:基于经纬度的城市聚类

结果:

代码:

import pandas as pd
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt# 读取城市数据
file_path = "China_cities.csv"  # 确保文件路径正确
data = pd.read_csv(file_path)# 检查数据
print("数据预览:")
print(data.head())# 提取经纬度数据
coordinates = data[['北纬', '东经']]# 数据清洗:确保数据没有缺失值
coordinates = coordinates.dropna()# 转换为数值类型(如果必要)
coordinates['北纬'] = pd.to_numeric(coordinates['北纬'], errors='coerce')
coordinates['东经'] = pd.to_numeric(coordinates['东经'], errors='coerce')# 丢弃无法转换为数值的行
coordinates = coordinates.dropna()# 使用 K-Means 模型进行聚类
kmeans = KMeans(n_clusters=5, random_state=42)  # 将城市分为3类
data['聚类标签'] = kmeans.fit_predict(coordinates)# 输出聚类中心
print("聚类中心:")
print(kmeans.cluster_centers_)# 绘制聚类结果图
plt.figure(figsize=(10, 6))
colors = ['gray', 'blue', 'green',"yellow","cyan"]for i in range(5):  # 根据聚类标签绘制不同颜色的点cluster_points = data[data['聚类标签'] == i]plt.scatter(cluster_points['东经'], cluster_points['北纬'], c=colors[i], label=f'聚类{i+1}')# 绘制聚类中心
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 1], centers[:, 0], c='Red', marker='*', s=200, label='聚类中心')# 设置图表标题和轴标签
plt.title('中国主要城市聚类图', fontsize=16)
plt.xlabel('东经', fontsize=12)
plt.ylabel('北纬', fontsize=12)
plt.legend()
plt.grid()
plt.show()

 思考题一:

结果:

代码: 

import jieba
import matplotlib.pyplot as plt# 读取政府工作报告文件
file_path = "govreport-2022.txt"  # 替换为实际文件路径
with open(file_path, "r", encoding="utf-8") as f:text = f.read()# 分词处理
words = jieba.lcut(text)# 统计词频并存储到字典
word_count = {}
for word in words:# 去除标点符号和无意义的单字if len(word) > 1 and word not in [",", "。", "、", "“", "”", "的", "和", "是", "在"]:word_count[word] = word_count.get(word, 0) + 1# 将字典转换为列表并按词频降序排序
sorted_word_count = sorted(word_count.items(), key=lambda x: x[1], reverse=True)# 提取前5个高频词并构建两个列表
top_words = sorted_word_count[:5]
words = [item[0] for item in top_words]
counts = [item[1] for item in top_words]# 绘制柱状图
plt.figure(figsize=(10, 6))
bars = plt.bar(words, counts, color="skyblue")# 在每个柱上方添加数字
for bar, count in zip(bars, counts):plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(),  # 坐标调整str(count), ha="center", va="bottom", fontsize=15)# 设置标题和标签
plt.title("2022年政府工作报告高频词", fontsize=16)
plt.xlabel("单词名称", fontsize=20)
plt.ylabel("出现频率", fontsize=20)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.tight_layout()# 显示图表
plt.show()

思考题二:

 结果:

代码:

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
from matplotlib import rcParams# 设置字体为 SimHei(黑体)
rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
rcParams['axes.unicode_minus'] = False  # 用来正常显示负号# 加载鸢尾花数据集
iris = load_iris()
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data['种类'] = iris.target# 查看数据集前5行
print("鸢尾花数据集前5行:")
print(data.head())# 提取四个特征数据
features = data.iloc[:, :4]  # 全部四个特征# 使用 K-Means 模型进行聚类
kmeans = KMeans(n_clusters=3, random_state=42)  # 将数据分为3类
data['聚类标签'] = kmeans.fit_predict(features)# 输出聚类中心
print("聚类中心:")
print(kmeans.cluster_centers_)# 绘制两张图
plt.figure(figsize=(12, 10))# 子图1:花萼长度和宽度
plt.subplot(2, 1, 1)
colors = ['yellow', 'blue', 'green']
markers = ['o', 's', '^']  # 圆形、方形、三角形for i in range(3):  # 遍历3个聚类cluster_points = data[data['聚类标签'] == i]plt.scatter(cluster_points.iloc[:, 0], cluster_points.iloc[:, 1], c=colors[i], marker=markers[i], label=f'聚类{i+1}')# 绘制聚类中心
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', marker='*', s=300, label='聚类中心')# 设置标题和轴标签
plt.title('鸢尾花按花萼特征聚类图', fontsize=16)
plt.xlabel('花萼长度', fontsize=12)
plt.ylabel('花萼宽度', fontsize=12)
plt.legend()
plt.grid()# 子图2:花瓣长度和宽度
plt.subplot(2, 1, 2)for i in range(3):  # 遍历3个聚类cluster_points = data[data['聚类标签'] == i]plt.scatter(cluster_points.iloc[:, 2], cluster_points.iloc[:, 3], c=colors[i], marker=markers[i], label=f'聚类{i+1}')# 绘制聚类中心
plt.scatter(centers[:, 2], centers[:, 3],  c='red', marker='*', s=300, label='聚类中心')# 设置标题和轴标签
plt.title('鸢尾花按花瓣特征聚类图', fontsize=16)
plt.xlabel('花瓣长度', fontsize=12)
plt.ylabel('花瓣宽度', fontsize=12)
plt.legend()
plt.grid()# 显示图形
plt.tight_layout()
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/33770.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux--git

ok,我们今天来学习如何在Linux上建立链接git 版本控制器Git 不知道你⼯作或学习时,有没有遇到这样的情况:我们在编写各种⽂档时,为了防⽌⽂档丢失,更改 失误,失误后能恢复到原来的版本,不得不…

凸优化算法学习笔记:决策单调性与 wqs二分

文章目录 前言决策单调性单调矩阵,完全单调矩阵,蒙日阵决策单调性优化 d p dp dp线性 d p dp dp分治(离线)二分队列(在线)SMAWK 区间 d p dp dp 练习题LOJ6039 w q s wqs wqs 二分(蒙日阵最短…

基于YOLOv8深度学习的PCB缺陷检测识别系统【python源码+GUI界面+数据集+训练代码】

目录 一、界面功能展示 二、前言摘要 三、GUI界面演示 (一)用户加载自定义模型 (二)单张图像检测 (三)检测图像文件夹 (四)检测视频 (五)保存 四、模…

Matlab 多项式拟合点法线(二维)

文章目录 一、简介二、实现代码三、实现效果一、简介 这个思路其实很简单,假设我们有一组曲线点,我们可以对其拟合曲线并计算其导数来获取每个点的法向量,当然这一思路也可以扩展至三维。具体过程如下所示: 二、实现代码 %% *********

Cesium 入门教程(基于 vue3)

目录 Cesium 介绍: 下载 Cesium,2种路径: 下载成功后,创建 vue3 项目: 编写内容 一个“纯”地球 添加图层 坐标系及其数值转换 相机位置及动态交互 添加物体和3维建筑物 Cesium 介绍: Cesium 是一个开源的 JavaScript …

力扣——合并K个排序链表

题目链接: 链接 题目描述: 思路: 同步合并 已知顺序排列,每个链表的node比较再加进结果,用优先队列方便比较node,可以先把每个链表的头结点加进队列,然后队列头出,出来的头还有n…

可复用表格组件设计与实现:分页、排序、筛选全功能解析

文章目录 一、组件设计思路1.1 功能需求分析1.2 技术选型 二、组件架构设计2.1 组件结构2.2 数据流设计 三、核心代码实现3.1 基础表格组件3.2 状态管理 四、功能模块实现4.1 分页组件4.2 排序控制4.3 筛选控制 五、性能优化方案5.1 虚拟滚动5.2 防抖筛选 六、完整测试方案6.1 …

Unity屏幕适配——立项时设置

项目类型:2D游戏、竖屏、URP 其他类型,部分原理类似。 1、确定设计分辨率:750*1334 为什么是它? 因为它是 iphone8 的尺寸,宽高比适中。 方便后续适配到真机的 “更长屏” 或 “更宽屏” 2、在场景…

PawSQL for TDSQL:腾讯云TDSQL数据库性能优化全攻略

TDSQL 作为腾讯云推出的分布式数据库,凭借其高扩展性、高可用性和高性能等优势,广泛应用于金融、互联网、政务等领域。随着业务的不断增长和数据量的爆炸式增长,如何优化 TDSQL 数据库的性能,成为众多企业和开发者面临的挑战。本文…

机器学习(七)

一,监督学习和无监督学习聚类的数据集比较: 监督学习: 数据集包括输入的数据和与之对应的标签 无监督学习: 数据集仅含有输入的数据,要求算法自己通过所给的数据集来确定决策边界 二,聚类(Clustering): 聚…

海鲜水产行业wordpress外贸主题

模板采用清新的海洋风格设计,完美契合水产和海鲜行业的特点,让您的网站在众多竞争者中脱颖而出。 高质量的图片展示区域,让您可以展示新鲜捕捞的海鲜产品,吸引客户的注意力。 多功能性,满足业务需求: 模…

调优案例一:堆空间扩容提升吞吐量实战记录

📝 调优案例一:堆空间扩容提升吞吐量实战记录 🔧 调优策略:堆空间扩容三部曲 # 原配置(30MB堆空间) export CATALINA_OPTS"$CATALINA_OPTS -Xms30m -Xmx30m"# 新配置(扩容至120MB&am…

【大模型系列】llama.cpp本地运行大模型

上一篇链接: 【大模型系列】使用ollama本地运行千问2.5模型 我们讲了ollama本地运行大模型,这里我们介绍另一种本地运行大模型的方法:llamacpp 软件下载 下载地址:https://github.com/ggml-org/llama.cpp/releases 下载cpu版本的llamacpp&a…

maven之自定义插件

写在前面 在使用maven肯定是离不开插件的,比如执行mvn clean或者时mvn compile其实运行的就是绑定的默认插件。虽然我们一般不需要来自定义插件,但是为了使用的过程中更加的清晰,来尝试自定义插件还是很有必要的,所以本文就一起来…

工程实践:如何使用SU17无人机来实现室内巡检任务

阿木实验室最近发布了科研开发者版本的无人机SU17,该无人机上集成了四目视觉,三维激光雷达,云台吊舱,高算力的机载计算机,是一个非常合适的平台用于室内外巡检场景。同时阿木实验室维护了多个和无人机相关的开源项目。…

【瞎折腾/Dify】使用docker离线部署Dify

文章目录 说在前面安装Docker(外网)获取Dify源码(外网)拉取docker镜像(外网)导出镜像(内网)导入镜像(内网)运行问题 说在前面 外网操作系统:windows内网操作系统:ubuntu外网docker desktop版本:4.29.0外网docker版本:version 26.0…

【Git】配置Git

配置Git 忽略特殊文件 在日常开发中,有些文件不想或不应该提交到远端,如保存数据库密码的配置文件。 在Git工作区的根目录下创建一个特殊的.gitignore文件,把要忽略的文件名填进去,Git就会自动忽略这些文件。 不需要从头写.gi…

mysql学习-常用sql语句

1、安装mysql参考网上链接,进入mysql数据库 mysql -u root -p 2、数据库操作 2.1、创建数据库 create database 数据库名 default character set utf8; 2.2、显示所有数据库 show databases; 2.3、选择数据库 use elementInfo; 2.4、删除数据库 drop database…

PostgreSQL16 的双向逻辑复制

一、配置 双向逻辑复制具体步骤 参考:PostgreSQL 16 双向逻辑复制与事务回环控制 - 墨天轮 1. 安装和准备环境 确保在所有参与复制的服务器上都安装了 PostgreSQL 16。主服务器:192.168.0.100从服务器:192.168.0.102 2. 配置 PostgreSQL 在每个服务…

FastAPI复杂查询终极指南:告别if-else的现代化过滤架构

title: FastAPI复杂查询终极指南:告别if-else的现代化过滤架构 date: 2025/3/14 updated: 2025/3/14 author: cmdragon excerpt: 本文系统讲解FastAPI中复杂查询条件的构建方法,涵盖参数验证、动态过滤、安全防护等18个核心技术点。通过引入策略模式、声明式编程等技术,彻…