【题解】—— LeetCode一周小结32

🌟欢迎来到 我的博客 —— 探索技术的无限可能!


🌟博客的简介(文章目录)


【题解】—— 每日一道题目栏


上接:【题解】—— LeetCode一周小结31

5.不含连续1的非负整数

题目链接:600. 不含连续1的非负整数

给定一个正整数 n ,请你统计在 [0, n] 范围的非负整数中,有多少个整数的二进制表示中不存在 连续的 1 。

示例 1:

输入: n = 5

输出: 5

解释:

下面列出范围在 [0, 5] 的非负整数与其对应的二进制表示:

0 : 0

1 : 1

2 : 10

3 : 11

4 : 100

5 : 101

其中,只有整数 3 违反规则(有两个连续的 1 ),其他 5 个满足规则。

示例 2:

输入: n = 1

输出: 2

示例 3:

输入: n = 2

输出: 3

提示:

1 <= n <= 109

题解:
方法:数位 DP
        

class Solution {public int findIntegers(int n) {int m = Integer.SIZE - Integer.numberOfLeadingZeros(n);int[][] memo = new int[m][2];for (int[] row : memo) {Arrays.fill(row, -1); // -1 表示没有计算过}return dfs(m - 1, 0, true, n, memo); // 从高位到低位}// pre 表示前一个比特位填的数private int dfs(int i, int pre, boolean isLimit, int n, int[][] memo) {if (i < 0) {return 1;}if (!isLimit && memo[i][pre] >= 0) { // 之前计算过return memo[i][pre];}int up = isLimit ? n >> i & 1 : 1;int res = dfs(i - 1, 0, isLimit && up == 0, n, memo); // 填 0if (pre == 0 && up == 1) { // 可以填 1res += dfs(i - 1, 1, isLimit, n, memo); // 填 1}if (!isLimit) {memo[i][pre] = res; // 记忆化}return res;}
}

6.找出所有稳定的二进制数组 I

题目链接:3129. 找出所有稳定的二进制数组 I

给你 3 个正整数 zero ,one 和 limit 。

一个
二进制数组
arr 如果满足以下条件,那么我们称它是 稳定的 :

0 在 arr 中出现次数 恰好 为 zero 。
1 在 arr 中出现次数 恰好 为 one 。
arr 中每个长度超过 limit 的
子数组
都 同时 包含 0 和 1 。
请你返回 稳定 二进制数组的 总 数目。

由于答案可能很大,将它对 109 + 7 取余 后返回。

示例 1:

输入:zero = 1, one = 1, limit = 2

输出:2

解释:

两个稳定的二进制数组为 [1,0] 和 [0,1] ,两个数组都有一个 0 和一个 1 ,且没有子数组长度大于 2 。

示例 2:

输入:zero = 1, one = 2, limit = 1

输出:1

解释:

唯一稳定的二进制数组是 [1,0,1] 。

二进制数组 [1,1,0] 和 [0,1,1] 都有长度为 2 且元素全都相同的子数组,所以它们不稳定。

示例 3:

输入:zero = 3, one = 3, limit = 2

输出:14

解释:

所有稳定的二进制数组包括 [0,0,1,0,1,1] ,[0,0,1,1,0,1] ,[0,1,0,0,1,1]
,[0,1,0,1,0,1] ,[0,1,0,1,1,0] ,[0,1,1,0,0,1] ,[0,1,1,0,1,0]
,[1,0,0,1,0,1] ,[1,0,0,1,1,0] ,[1,0,1,0,0,1] ,[1,0,1,0,1,0]
,[1,0,1,1,0,0] ,[1,1,0,0,1,0] 和 [1,1,0,1,0,0] 。

提示:

1 <= zero, one, limit <= 200

题解:
方法:动态规划
        

class Solution {public int numberOfStableArrays(int zero, int one, int limit) {final int mod = (int) 1e9 + 7;long[][][] f = new long[zero + 1][one + 1][2];for (int i = 1; i <= Math.min(zero, limit); ++i) {f[i][0][0] = 1;}for (int j = 1; j <= Math.min(one, limit); ++j) {f[0][j][1] = 1;}for (int i = 1; i <= zero; ++i) {for (int j = 1; j <= one; ++j) {long x = i - limit - 1 < 0 ? 0 : f[i - limit - 1][j][1];long y = j - limit - 1 < 0 ? 0 : f[i][j - limit - 1][0];f[i][j][0] = (f[i - 1][j][0] + f[i - 1][j][1] - x + mod) % mod;f[i][j][1] = (f[i][j - 1][0] + f[i][j - 1][1] - y + mod) % mod;}}return (int) ((f[zero][one][0] + f[zero][one][1]) % mod);}
}

7.找出所有稳定的二进制数组 II

题目链接:3130. 找出所有稳定的二进制数组 II

给你 3 个正整数 zero ,one 和 limit 。

一个
二进制数组
arr 如果满足以下条件,那么我们称它是 稳定的 :

0 在 arr 中出现次数 恰好 为 zero 。
1 在 arr 中出现次数 恰好 为 one 。
arr 中每个长度超过 limit 的
子数组
都 同时 包含 0 和 1 。
请你返回 稳定 二进制数组的 总 数目。

由于答案可能很大,将它对 109 + 7 取余 后返回。

示例 1:

输入:zero = 1, one = 1, limit = 2

输出:2

解释:

两个稳定的二进制数组为 [1,0] 和 [0,1] ,两个数组都有一个 0 和一个 1 ,且没有子数组长度大于 2 。

示例 2:

输入:zero = 1, one = 2, limit = 1

输出:1

解释:

唯一稳定的二进制数组是 [1,0,1] 。

二进制数组 [1,1,0] 和 [0,1,1] 都有长度为 2 且元素全都相同的子数组,所以它们不稳定。

示例 3:

输入:zero = 3, one = 3, limit = 2

输出:14

解释:

所有稳定的二进制数组包括 [0,0,1,0,1,1] ,[0,0,1,1,0,1] ,[0,1,0,0,1,1]
,[0,1,0,1,0,1] ,[0,1,0,1,1,0] ,[0,1,1,0,0,1] ,[0,1,1,0,1,0]
,[1,0,0,1,0,1] ,[1,0,0,1,1,0] ,[1,0,1,0,0,1] ,[1,0,1,0,1,0]
,[1,0,1,1,0,0] ,[1,1,0,0,1,0] 和 [1,1,0,1,0,0] 。

提示:

1 <= zero, one, limit <= 1000

题解:
方法:递推
        

class Solution {public int numberOfStableArrays(int zero, int one, int limit) {final int MOD = 1_000_000_007;int[][][] f = new int[zero + 1][one + 1][2];for (int i = 1; i <= Math.min(limit, zero); i++) {f[i][0][0] = 1;}for (int j = 1; j <= Math.min(limit, one); j++) {f[0][j][1] = 1;}for (int i = 1; i <= zero; i++) {for (int j = 1; j <= one; j++) {// + MOD 保证答案非负f[i][j][0] = (int) (((long) f[i - 1][j][0] + f[i - 1][j][1] + (i > limit ? MOD - f[i - limit - 1][j][1] : 0)) % MOD);f[i][j][1] = (int) (((long) f[i][j - 1][0] + f[i][j - 1][1] + (j > limit ? MOD - f[i][j - limit - 1][0] : 0)) % MOD);}}return (f[zero][one][0] + f[zero][one][1]) % MOD;}
}

8.找出与数组相加的整数 I

题目链接:3131. 找出与数组相加的整数 I

给你两个长度相等的数组 nums1 和 nums2。

数组 nums1 中的每个元素都与变量 x 所表示的整数相加。如果 x 为负数,则表现为元素值的减少。

在与 x 相加后,nums1 和 nums2 相等 。当两个数组中包含相同的整数,并且这些整数出现的频次相同时,两个数组 相等 。

返回整数 x 。

示例 1:

输入:nums1 = [2,6,4], nums2 = [9,7,5]

输出:3

解释:

与 3 相加后,nums1 和 nums2 相等。

示例 2:

输入:nums1 = [10], nums2 = [5]

输出:-5

解释:

与 -5 相加后,nums1 和 nums2 相等。

示例 3:

输入:nums1 = [1,1,1,1], nums2 = [1,1,1,1]

输出:0

解释:

与 0 相加后,nums1 和 nums2 相等。

提示:

1 <= nums1.length == nums2.length <= 100

0 <= nums1[i], nums2[i] <= 1000

测试用例以这样的方式生成:存在一个整数 x,使得 nums1 中的每个元素都与 x 相加后,nums1 与 nums2 相等。

题解:
方法:数学
        

class Solution {public int addedInteger(int[] nums1, int[] nums2) {return min(nums2) - min(nums1);}private int min(int[] nums) {int res = Integer.MAX_VALUE;for (int x : nums) {res = Math.min(res, x);}return res;}
}

9.找出与数组相加的整数 II

题目链接:3132. 找出与数组相加的整数 II

给你两个整数数组 nums1 和 nums2。

从 nums1 中移除两个元素,并且所有其他元素都与变量 x 所表示的整数相加。如果 x 为负数,则表现为元素值的减少。

执行上述操作后,nums1 和 nums2 相等 。当两个数组中包含相同的整数,并且这些整数出现的频次相同时,两个数组 相等 。

返回能够实现数组相等的 最小 整数 x 。

示例 1:

输入:nums1 = [4,20,16,12,8], nums2 = [14,18,10]

输出:-2

解释:

移除 nums1 中下标为 [0,4] 的两个元素,并且每个元素与 -2 相加后,nums1 变为 [18,14,10] ,与 nums2
相等。

示例 2:

输入:nums1 = [3,5,5,3], nums2 = [7,7]

输出:2

解释:

移除 nums1 中下标为 [0,3] 的两个元素,并且每个元素与 2 相加后,nums1 变为 [7,7] ,与 nums2 相等。

提示:

3 <= nums1.length <= 200

nums2.length == nums1.length - 2

0 <= nums1[i], nums2[i] <= 1000

测试用例以这样的方式生成:存在一个整数 x,nums1 中的每个元素都与 x 相加后,再移除两个元素,nums1 可以与 nums2 相等。

题解:
方法:O(nlogn) 排序+判断子序列
        

class Solution {public int minimumAddedInteger(int[] nums1, int[] nums2) {Arrays.sort(nums1);Arrays.sort(nums2);// 枚举保留 nums1[2] 或者 nums1[1] 或者 nums1[0]// 倒着枚举是因为 nums1[i] 越大答案越小,第一个满足的就是答案for (int i = 2; i > 0; i--) {int x = nums2[0] - nums1[i];// 在 {nums1[i] + x} 中找子序列 nums2int j = 0;for (int k = i; k < nums1.length; k++) {if (nums2[j] == nums1[k] + x && ++j == nums2.length) {// nums2 是 {nums1[i] + x} 的子序列return x;}}}// 题目保证答案一定存在return nums2[0] - nums1[0];}
}

10.找到 Alice 和 Bob 可以相遇的建筑

题目链接:2940. 找到 Alice 和 Bob 可以相遇的建筑

给你一个下标从 0 开始的正整数数组 heights ,其中 heights[i] 表示第 i 栋建筑的高度。

如果一个人在建筑 i ,且存在 i < j 的建筑 j 满足 heights[i] < heights[j] ,那么这个人可以移动到建筑 j 。

给你另外一个数组 queries ,其中 queries[i] = [ai, bi] 。第 i 个查询中,Alice 在建筑 ai ,Bob 在建筑 bi 。

请你能返回一个数组 ans ,其中 ans[i] 是第 i 个查询中,Alice 和 Bob 可以相遇的 最左边的建筑 。如果对于查询 i ,Alice 和 Bob 不能相遇,令 ans[i] 为 -1 。

示例 1:

输入:heights = [6,4,8,5,2,7], queries = [[0,1],[0,3],[2,4],[3,4],[2,2]]

输出:[2,5,-1,5,2]

解释:第一个查询中,Alice 和 Bob 可以移动到建筑 2 ,因为 heights[0] < heights[2] 且
heights[1] < heights[2] 。

第二个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[0] < heights[5] 且 heights[3]
< heights[5] 。

第三个查询中,Alice 无法与 Bob 相遇,因为 Alice 不能移动到任何其他建筑。

第四个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[3] < heights[5] 且 heights[4]
< heights[5] 。

第五个查询中,Alice 和 Bob 已经在同一栋建筑中。

对于 ans[i] != -1 ,ans[i] 是 Alice 和 Bob 可以相遇的建筑中最左边建筑的下标。

对于 ans[i] == -1 ,不存在 Alice 和 Bob 可以相遇的建筑。

示例 2:

输入:heights = [5,3,8,2,6,1,4,6], queries =
[[0,7],[3,5],[5,2],[3,0],[1,6]]

输出:[7,6,-1,4,6]

解释:第一个查询中,Alice 可以直接移动到 Bob 的建筑,因为 heights[0] < heights[7] 。

第二个查询中,Alice 和 Bob 可以移动到建筑 6 ,因为 heights[3] < heights[6] 且 heights[5]
< heights[6] 。

第三个查询中,Alice 无法与 Bob 相遇,因为 Bob 不能移动到任何其他建筑。

第四个查询中,Alice 和 Bob 可以移动到建筑 4 ,因为 heights[3] < heights[4] 且 heights[0]
< heights[4] 。

第五个查询中,Alice 可以直接移动到 Bob 的建筑,因为 heights[1] < heights[6] 。

对于 ans[i] != -1 ,ans[i] 是 Alice 和 Bob 可以相遇的建筑中最左边建筑的下标。

对于 ans[i] == -1 ,不存在 Alice 和 Bob 可以相遇的建筑。

提示:

1 <= heights.length <= 5 * 104

1 <= heights[i] <= 109

1 <= queries.length <= 5 * 104

queries[i] = [ai, bi]

0 <= ai, bi <= heights.length - 1

题解:
方法1:离线+最小堆
        

class Solution {public int[] leftmostBuildingQueries(int[] heights, int[][] queries) {int[] ans = new int[queries.length];Arrays.fill(ans, -1);List<int[]>[] qs = new ArrayList[heights.length];Arrays.setAll(qs, i -> new ArrayList<>());for (int i = 0; i < queries.length; i++) {int a = queries[i][0];int b = queries[i][1];if (a > b) {int tmp = a;a = b;b = tmp; // 保证 a <= b}if (a == b || heights[a] < heights[b]) {ans[i] = b; // a 直接跳到 b} else {qs[b].add(new int[]{heights[a], i}); // 离线询问}}PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> a[0] - b[0]);for (int i = 0; i < heights.length; i++) {while (!pq.isEmpty() && pq.peek()[0] < heights[i]) {// 堆顶的 heights[a] 可以跳到 heights[i]ans[pq.poll()[1]] = i;}for (int[] q : qs[i]) {pq.offer(q); // 后面再回答}}return ans;}
}

方法2:离线+单调栈二分
        

class Solution {public int[] leftmostBuildingQueries(int[] heights, int[][] queries) {int n = heights.length;int[] ans = new int[queries.length];List<int[]>[] qs = new ArrayList[n];Arrays.setAll(qs, i -> new ArrayList<>());for (int i = 0; i < queries.length; i++) {int a = queries[i][0];int b = queries[i][1];if (a > b) {int tmp = a;a = b;b = tmp; // 保证 a <= b}if (a == b || heights[a] < heights[b]) {ans[i] = b; // a 直接跳到 b} else {qs[b].add(new int[]{heights[a], i}); // 离线询问}}int[] st = new int[n];int top = 0;for (int i = n - 1; i >= 0; i--) {for (int[] q : qs[i]) {ans[q[1]] = binarySearch(heights, st, top, q[0]);}while (top > 0 && heights[i] >= heights[st[top - 1]]) {top--;}st[top++] = i;}return ans;}// 返回 st 中最后一个 > x 的高度的下标// 如果不存在,返回 -1// https://www.bilibili.com/video/BV1AP41137w7/private int binarySearch(int[] heights, int[] st, int right, int x) {int left = -1; // 开区间 (left, right)while (left + 1 < right) { // 开区间不为空int mid = (left + right) >>> 1;if (heights[st[mid]] > x) {left = mid; // 范围缩小到 (mid, right)} else {right = mid; // 范围缩小到 (left, mid)}}return left < 0 ? -1 : st[left];}
}

方法3:在线+线段树二分
        

class Solution {public int[] leftmostBuildingQueries(int[] heights, int[][] queries) {int n = heights.length;mx = new int[2 << (Integer.SIZE - Integer.numberOfLeadingZeros(n))];build(1, 0, n - 1, heights);int[] ans = new int[queries.length];for (int i = 0; i < queries.length; i++) {int a = queries[i][0];int b = queries[i][1];if (a > b) {int tmp = a;a = b;b = tmp; // 保证 a <= b}if (a == b || heights[a] < heights[b]) {ans[i] = b; // a 直接跳到 b} else {// 线段树二分,找 [b+1,n-1] 中的第一个 > heights[a] 的位置ans[i] = query(1, 0, n - 1, b + 1, heights[a]);}}return ans;}private int[] mx;// 用 heights 初始化线段树,维护区间最大值private void build(int o, int l, int r, int[] heights) {if (l == r) {mx[o] = heights[l];return;}int m = (l + r) / 2;build(o * 2, l, m, heights);build(o * 2 + 1, m + 1, r, heights);mx[o] = Math.max(mx[o * 2], mx[o * 2 + 1]);}// 返回 [L,n-1] 中第一个 > v 的值的下标// 如果不存在,返回 -1private int query(int o, int l, int r, int L, int v) {if (mx[o] <= v) { // 区间最大值 <= vreturn -1; // 没有 > v 的数}if (l == r) { // 找到了return l;}int m = (l + r) / 2;if (L <= m) {int pos = query(o * 2, l, m, L, v); // 递归左子树if (pos >= 0) { // 找到了return pos;}}return query(o * 2 + 1, m + 1, r, L, v); // 递归右子树}
}

11.不相交的线

题目链接:1035. 不相交的线

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足:

nums1[i] == nums2[j]
且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

示例 1:

在这里插入图片描述

输入:nums1 = [1,4,2], nums2 = [1,2,4]

输出:2

解释:可以画出两条不交叉的线,如上图所示。

但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到
nums2[1]=2 的直线相交。

示例 2:

输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2]

输出:3

示例 3:

输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1]

输出:2

提示:

1 <= nums1.length, nums2.length <= 500

1 <= nums1[i], nums2[j] <= 2000

题解:
方法:动态规划
        

class Solution {public int maxUncrossedLines(int[] nums1, int[] nums2) {int m = nums1.length, n = nums2.length;int[][] f = new int[m + 1][n + 1];for (int i = 1; i <= m; ++i) {for (int j = 1; j <= n; ++j) {if (nums1[i - 1] == nums2[j - 1]) {f[i][j] = f[i - 1][j - 1] + 1;} else {f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);}}}return f[m][n];}
}

下接:【题解】—— LeetCode一周小结33


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/404231.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++的序列容器——数组

前言&#xff1a; 这篇文章我们就开始新的章节&#xff0c;我们之前说的C/C的缺陷那部分内容就结束了。在开始新的章之前我希望大家可以先对着题目思考一下&#xff0c;C的容器是什么&#xff1f;有什么作用&#xff1f;下面让我们开始新的内容&#xff1a; 目录 前言&#x…

Golang | Leetcode Golang题解之第343题整数拆分

题目&#xff1a; 题解&#xff1a; func integerBreak(n int) int {if n < 3 {return n - 1}quotient : n / 3remainder : n % 3if remainder 0 {return int(math.Pow(3, float64(quotient)))} else if remainder 1 {return int(math.Pow(3, float64(quotient - 1))) * …

简简单单用用perf

实践前提&#xff1a;正确安装 perf 和 FlameGrap。若没安装&#xff0c;心领神会亦可。 1 示例程序 #define m_loop() ({ for(int i0; i < 1000000; i); })void fb(void) {m_loop(); }void fj(void) {fb(); }void fy(void) {m_loop(); }void loop(void) {for (;;) {fy();…

WPF动画

补间动画&#xff1a;动画本质就是在一个时间段内对象尺寸、位移、旋转角度、缩放、颜色、透明度等属性值的连续变化。也包括图形变形的属性。时间、变化的对象、变化的值 工业应用场景&#xff1a;蚂蚁线、旋转、高度变化、指针偏移、小车 WPF动画与分类 特定对象处理动画过…

xss.function靶场(easy)

文章目录 第一关Ma Spaghet!第二关Jefff第三关Ugandan Knuckles第四关Ricardo Milos第五关Ah Thats Hawt第六关Ligma第七关Mafia第八关Ok, Boomer 网址&#xff1a;https://xss.pwnfunction.com/ 第一关Ma Spaghet! 源码 <!-- Challenge --> <h2 id"spaghet&qu…

【精选】基于Python大型购物商城系统(京东购物商城,淘宝购物商城,拼多多购物商城爬虫系统)

目录&#xff1a; 目录&#xff1a; 系统介绍&#xff1a; 系统开发技术 Python语言 Django框架简介 MySQL数据库技术 B/S架构 系统设计 系统总体设计 系统详细界面实现&#xff1a; 系统测试 测试目的 测试用例 本章小结 参考代码&#xff1a; 为什么选择我&…

Ubuntu中编译使用ANTs(医学图像配准)含github无法访问问题解决

目录 第一步、修改hosts文件 1.打开https://github.com.ipaddress.com/ 2.打开https://fastly.net.ipaddress.com/github.global.ssl.fastly.net#ipinfo 3.打开hosts文件&#xff0c;并在文件末尾添加如下内容 第二步、编译ANTs 1&#xff09;首先安装git、cmake以及c编译…

如何在桌面同时展示多个窗口

一、实现2分屏显示 win箭头 二、实现3分屏显示 1. 在实现2分屏显示的基础上&#xff0c;再次点击箭头图标&#xff0c;这次选择屏幕的上方或下方。 2. 点击后&#xff0c;第三个窗口将会出现在你选择的区域。现在&#xff0c;你可以在三个窗口之间自由切换&#xff0c;提高工…

WebSocket协议解析与Java实践

文章目录 一、HTTP协议与HTTPS协议1.HTTP协议的用处2.HTTP协议的特点3.HTTP协议的工作流程4.HTTPS协议的用处5.HTTPS协议的特点6.HTTPS协议的工作流程 二、WebSocket协议出现的原因1. 传统的HTTP请求-响应模型2. 轮询&#xff08;Polling&#xff09;3. 长轮询&#xff08;Long…

虚幻5|AI巡逻宠物伴随及定点巡逻—初步篇

一.建立AI基本三件套 1.建立AI基本三件套 二.使用AI的基本设置 1.打开我们想要用的AI宠物的蓝图&#xff0c;选中自我Actor,右侧细节处找到AI&#xff0c;选中对应的AI控制器 三.打开AI控制器 写如下 四&#xff0c;AI行为树 1.新建一个任务&#xff0c;命名含巡逻二字即可…

一文读懂 服务器

一文读懂 服务器 马上就是毕业季了&#xff0c;做好的毕设不免上云服务器来演示一下&#xff0c;让自己答辩时加分。但相信很多小伙伴对服务器没有一个实体的概念&#xff0c;不明白什么是服务器&#xff0c;和平时使用的计算机又有什么区别。在网络上&#xff0c;经常看见的什…

PHP安全开发

安全开发 PHP 基础 增&#xff1a;insert into 表名(列名 1, 列名 2) value(‘列 1 值 1’, ‘列 2 值 2’); 删&#xff1a;delete from 表名 where 列名 ‘条件’; 改&#xff1a;update 表名 set 列名 数据 where 列名 ‘条件’; 查&#xff1a;select * from 表名 wher…

Java二十三种设计模式-责任链模式(17/23)

责任链模式&#xff1a;实现请求处理的灵活流转 引言 在这篇博客中&#xff0c;我们深入探讨了责任链模式的精髓&#xff0c;从其定义和用途到实现方法&#xff0c;再到使用场景、优缺点、与其他模式的比较&#xff0c;以及最佳实践和替代方案&#xff0c;旨在指导开发者如何…

C++:平衡二叉搜索树之红黑树

一、红黑树的概念 红黑树&#xff0c; 和AVL都是二叉搜索树&#xff0c; 红黑树通过在每个节点上增加一个储存位表示节点的颜色&#xff0c; 可以是RED或者BLACK&#xff0c; 通过任何一条从根到叶子的路径上各个节点着色方式的限制&#xff0c;红黑树能够确保没有一条路径会比…

Selenium + Python 自动化测试12(unittest组织更多用例)

我们的目标是&#xff1a;按照这一套资料学习下来&#xff0c;大家可以独立完成自动化测试的任务。 上一篇我们讨论了unittest中test suite 的构建&#xff0c;可以测试多条测试用例。 本篇文章我们接着讲。使用discover()方法构建更多的测试用例。 1、引入需要完成的任务 上…

【网络编程】基于UDP的TFTP文件传输

1&#xff09;tftp协议概述 简单文件传输协议&#xff0c;适用于在网络上进行文件传输的一套标准协议&#xff0c;使用UDP传输 特点&#xff1a; 是应用层协议 基于UDP协议实现 数据传输模式 octet&#xff1a;二进制模式&#xff08;常用&#xff09; mail&#xff1a;已经不再…

Linux进程间通信学习记录(IPC 机制、共享内存以及信号灯集)

0.System V IPC机制&#xff1a; ①.IPC对象包含&#xff1a;共享内存、消息队列和信号灯集。 ②.每个IPC对象有唯一的ID。 ③.IPC对象创建后一直存在&#xff0c;直到被显示地删除。 ④.每一个IPC对象有一个关联的KEY。&#xff08;其他进程通过KEY访问对应的IPC对象&#xff…

Ubuntu安装Anaconda3

本文详细阐述了在 Ubuntu 系统中安装 Anaconda3 的完整流程。包括 Anaconda3 安装包的获取途径&#xff0c;具体安装过程中的每一个步骤及注意事项&#xff0c;还有安装后的环境变量设置和安装成功的验证方法。旨在为 Ubuntu 用户提供清晰、易懂且准确的 Anaconda3 安装指南&am…

Unity--AssetBundle AB包管理器

1.简介 AB包&#xff08;AssetBundle&#xff09;是Unity中用于资源管理的一种机制&#xff0c;它允许开发者将多个文件&#xff08;如纹理、模型、音频等&#xff09;打包成一个单独的文件&#xff0c;以便于在游戏运行时动态加载和卸载。 但是现在出现了最新的Addressable来…

docker部署drawio

1&#xff09;介绍Drawio.io GitHub&#xff1a;GitHub - jgraph/drawio: draw.io is a JavaScript, client-side editor for general diagramming. Draw.io是一款开源的绘制流程图的工具&#xff0c;拥有大量免费素材和模板。程序本身支持中文在内的多国语言&#xff0c;创建…