文心一言 VS 讯飞星火 VS chatgpt (43)-- 算法导论5.4 7题

七、为使特征序列长度的下界变得更精确,请说明在 n 次硬币的公平抛掷中,不出现比Ign - 2lglgn 更长的连续正面特征序列的概率小于 1/n。

文心一言:

在 n 次硬币的公平抛掷中,每个硬币正、反面朝上的概率均为 1/2。让我们考虑一个事件 A,其表示在 n 次抛掷中不出现比连续 lgn 更长的连续正面特征序列。事件的 A 对立事件 B 由出现比连续 lgn 更长的连续正面特征序列组成。

根据德布鲁因下界,在 n 次硬币的公平抛掷中,出现比连续 lgn 更长的连续正面特征序列的概率的下界为 1/2^lgn。因此,事件 B 的概率的下界为 1/2^lgn。因此,事件 A 的概率为 1 - 1/2^lgn。

由于我们希望在 n 次硬币的公平抛掷中,不出现比连续 lgn 更长的连续正面特征序列的概率小于 1/n,因此我们需要确保事件 A 的概率大于 1/n,即 1 - 1/2^lgn > 1/n。

解上述不等式,我们得到:

1 - 1/n > 1/2^lgn

化简后得到:

2^lgn > n/(n-1)

对两边取对数,得到:

lgn > log(n/(n-1))

由于 log(n/(n-1)) < log(1+1/n),且当 n>1 时,log(1+1/n) 的极限为 ln2,因此:

lgn < ln2

因此,为了使特征序列长度的下界变得更精确,我们需要在 n 次硬币的公平抛掷中,定义一个比连续 lgn 更小的下界,可以使用以下不等式:

2^(lgn - ln2) < n/(n-1)

对该不等式两边取对数,得到:

lgn - ln2 < log(n/(n-1))

因此,新的下界为 lgn - ln2,它比原始的 lgn 更精确。

在这里插入图片描述

在这里插入图片描述

讯飞星火:

本题考查概率的求法,是中档题,解题时要认真审题,注意等比数列、n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用。

设第i个特征序列的长度为 a i a_{i} ai,则 a 1 = 2 a_{1}=2 a1=2, a 2 = 4 a_{2}=4 a2=4, a 3 = 8 a_{3}=8 a3=8, … \ldots ,由已知得 { a i } \{a_{i}\} {ai}为公比为2的等比数列,由此能求出不出现比 I g n − 2 lg ⁡ lg ⁡ n Ign-2\lg\lg n Ign2lglgn更长的连续正面特征序列的概率小于 1 n \dfrac{1}{n} n1.

解:设第i个特征序列的长度为 a i a_{i} ai,则 a 1 = 2 a_{1}=2 a1=2, a 2 = 4 a_{2}=4 a2=4, a 3 = 8 a_{3}=8 a3=8, … \ldots ,

由已知得 { a i } \{a_{i}\} {ai}为公比为2的等比数列,

∴ a i = 2 i ( i = 1 , 2 , 3 , … ) \therefore a_{i}=2^{i}(i=1,2,3,\ldots) ai=2i(i=1,2,3,),

$\because 在 n 次硬币的公平抛掷中,不出现比 在n次硬币的公平抛掷中,不出现比 n次硬币的公平抛掷中,不出现比Ign-2\lg\lg n 更长的连续正面特征序列的概率小于 更长的连续正面特征序列的概率小于 更长的连续正面特征序列的概率小于\dfrac{1}{n}$,

$\therefore 不出现比 不出现比 不出现比Ign-2\lg\lg n 更长的连续正面特征序列的概率小于 更长的连续正面特征序列的概率小于 更长的连续正面特征序列的概率小于\dfrac{1}{n}$.

在这里插入图片描述

华为盘古:

在硬币的公平抛掷中,正面特征序列的长度下界是 ( l g n ) (lgn) (lgn),其中 l g n lgn lgn 是硬币的质量, g g g 是硬币的直径。

因此,如果要使得特征序列长度的下界变得更精确,需要找到一种方法使得每次抛掷硬币的正面特征序列长度都比 ( l g n ) (lgn) (lgn) 小。

对于可能出现的情况,我们可以考虑以下几种:

1.使用更小的硬币质量:我们可以设计一种更小的硬币,使得其质量更小,从而使正面特征序列的长度更小。例如,如果使用 0.1 0.1 0.1 的硬币,正面特征序列的长度将变为 0.1 0.1 0.1$。

2.使用更小的硬币直径:我们可以设计一种更小的硬币直径,从而使正面特征序列的长度更小。例如,如果使用 0.02 0.02 0.02 的硬币,正面特征序列的长度将变为 0.02 0.02 0.02$。

3.调整硬币的重心:我们可以调整硬币的重心,从而使其在抛掷过程中更稳定,从而使正面特征序列的长度更小。例如,如果将硬币的重心设置在底部,正面特征序列的长度将变为 0.02 0.02 0.02$。

总之,以上方法中,只有使用更小的硬币质量或更小的硬币直径才有可能使得正面特征序列的长度更小。然而,由于硬币的质量或直径是固定的,因此这种方法不是一种绝对精确的方法。

综上所述,在硬币的公平抛掷中,不出现比 Ign - 2lglgn 更长的连续正面特征序列的概率小于 1/n。

在这里插入图片描述

360智脑:

首先,我们需要确定一个与连续正面特征序列有关的概率分布函数(PDF)。假设每次抛掷硬币时,正面朝上的概率是 p = 0.5。因此,我们可以将 PDF 表示为一个线性组合,即 f(x) = (1-p)^x * p,其中 x 表示连续正面特征序列的长度。这个 PDF 对于所有可能的连续正面特征序列长度都是等概率的。

接下来,我们考虑最坏情况下连续正面特征序列长度的期望。在最坏情况下,连续正面特征序列长度的期望等于 Ign - 2log(n),其中 Ign 表示前 n 个硬币的正反面次数之和。由于正反面次数之和服从伯努利分布,因此我们可以使用二项式定理来计算期望。具体来说,对于任何大于或等于 1 的自然数 k,我们有 E[X_k] = np^k * (1-p)^{n-k},其中 X_k 表示第 k 次抛出硬币时出现正面朝上的次数。将上述公式代入到最坏情况下连续正面特征序列长度的期望公式中,得到 Ign - 2log(n) = np^Ign * (1-p)^{n-Ign} + O(np^2 * (1-p)^n)。注意到 np^Ign * (1-p)^{n-Ign} 是一个关于 n 的多项式,并且它的最高次幂次方是 2log(n)。因此,在最坏情况下连续正面特征序列长度的期望可以近似为 Ign - 2log(n) = 2*log(n) * (1-p)^n + O(np^2 * (1-p)^n)。

现在,我们来考虑连续正面特征序列长度超过 Ign - 2log(n) 的概率。根据二项式定理,连续正面特征序列长度超过 Ign - 2log(n) 的概率等于 P(X_k > Ign - 2log(n)),其中 X_k 表示第 k 次抛出硬币时出现正面朝上的次数。由于连续正面特征序列长度的期望是 Ign - 2log(n),我们可以使用二项分布的性质来计算连续正面特征序列长度超过 Ign - 2log(n) 的概率。具体来说,连续正面特征序列长度超过 Ign - 2log(n) 的概率等于 P(X_k > Ign - 2log(n)),其中 k 满足 X_k > Ign - 2log(n)。由于连续正面特征序列长度的期望是 Ign - 2log(n),我们可以使用二项分布的性质计算连续正面特征序列长度超过 Ign - 2log(n) 的概率。具体来说,连续正面特征序列长度超过 Ign - 2log(n) 的概率等于 P(X_k > Ign - 2log(n)),其中 k 满足 X_k > Ign - 2log(n)。由于连续正面特征序列长度的期望是 Ign - 2log(n),我们可以使用二项分布的性质计算连续正面特征序列长度超过 Ign - 2log(n) 的概率。具体来说,连续正面特征序列长度超过 Ign - 2log(n) 的概率等于 P(X_k > Ign - 2log(n)),其中 k 满足 X_k > Ign - 2log(n)。

最后,我们要证明连续正面特征序列长度超过 Ign - 2log(n) 的概率小于 1/n。为了做到这一点,我们可以利用中心极限定理来将连续正面特征序列长度超过 Ign - 2log(n) 的概率转化为样本独立性的概率。具体来说,我们可以使用中心极限定理来证明如下不等式成立:

P(X_k > Ign - 2*log(n)) < 1/n

其中 X_k 表示第 k 次抛出硬币时出现正面朝上的次数。

在这里插入图片描述

chatglm:

为了使特征序列长度的下界变得更精确,我们可以使用最大长度序列的稳定性理论。在 n 次硬币的公平抛掷中,假设出现连续正面特征序列的长度为 k,则该序列的长度不可能超过 n-k+1。因此,我们可以定义一个下界序列,即不存在比下界序列更长的连续正面特征序列。下界序列的长度为 n-k+1,其中 k 为当前已知的最长连续正面特征序列长度。

根据最大长度序列的稳定性理论,下界序列的稳定性可以通过以下方式计算:

  • 如果下界序列的长度为 n-k+1,则在接下来的硬币抛掷中,不出现比下界序列更长的连续正面特征序列的概率为 1/n。

  • 如果下界序列的长度为 n-k+1,且在接下来的硬币抛掷中出现了比下界序列更长的连续正面特征序列,则下界序列的长度将更新为新的最长连续正面特征序列长度。

因此,为了使特征序列长度的下界变得更精确,我们可以不断更新下界序列的长度,并使用最大长度序列的稳定性理论来计算不出现比下界序列更长的连续正面特征序列的概率。这样,我们可以得到一个更加精确的下界,并且可以保证不出现比下界更长的连续正面特征序列的概率小于 1/n。

在这里插入图片描述

chatgpt:

在 n 次硬币的公平抛掷中,每次抛掷硬币的结果可以是正面(H,head)或反面(T,tail),概率相等。

考虑不出现长度超过 Ign - 2⌊lg(n)⌋ 的连续正面特征序列,其中 Ign 表示自底向上取整(lg(n)) 个最低有效位的整数。我们可以使用归纳法证明概率小于 1/n。

  • 对于 n=1,即只有一次抛掷的情况,不会出现连续正面特征序列,概率为 1,大于 1/n (1/1=1)。

  • 假设对于 k 次抛掷,不会出现长度超过 Ign - 2⌊lg(k)⌋ 的连续正面特征序列的概率小于 1/k。

  • 考虑 k+1 次抛掷。避免出现长度超过 Ign - 2⌊lg(k+1)⌋ 的连续正面特征序列的情况,要么是最后一次抛掷结果为反面,要么是最后一次抛掷结果为正面,但之前连续正面特征序列长度不超过 Ign - 2⌊lg(k)⌋。根据归纳假设,前一种情况概率为 1/2,后一种情况概率小于 1/k。

所以,在 k+1 次抛掷中,不会出现长度超过 Ign - 2⌊lg(k+1)⌋ 的连续正面特征序列的概率等于 (1/2) + (1/k) 小于等于 1/(k+1)。

根据归纳法原理,对于任意的正整数 n,不会出现长度超过 Ign - 2⌊lg(n)⌋ 的连续正面特征序列的概率小于 1/n。

需要注意的是,这个概率上界是一个相对较弱的上界,因为它仅是基于归纳假设得出的。在实际应用中,可能需要更强的上界或更精确的概率计算方法来确定特征序列长度的下界。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/41001.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

商汤AI象棋机器人到底谁在买?北大象棋大师已签收

金磊 衡宇 发自 凹非寺量子位 | 公众号 QbitAI 郭晶晶家的象棋家教——没错&#xff0c;就是商汤AI象棋机器人“元萝卜”&#xff08;SenseRobot&#xff09;&#xff0c;近日正式现货发售。 从近2个月前开始预售的那刻起&#xff0c;各种讨论就萦绕在它周围&#xff1a; AI象棋…

【Tensorflow+自然语言处理+LSTM】搭建智能聊天客服机器人实战(附源码、数据集和演示 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~ 一、自然语言处理与智能 自然语言处理技术是智能客服应用的基础&#xff0c;在自然语言处理过程中&#xff0c;首先需要进行分词处理&#xff0c;这个过程通常基于统计学理论&#xff0c;分词的精细化可以提升智能客服的语…

Python自动发抖音脚本教程(1:介绍和源码)

如果你很懒,不想自己一步一步的手动操作发抖音。希望自动化一键操作,那么你来这就对了。 本脚本可以模拟人工操作网页,自动发送抖音。不是纯接口的模式哦,如果符合你的期望请继续往后看。 【订阅获取源码,源码在最后】 我们先看效果: 首先我们准备好视频文件和封面。…

GPT-4 插件和插件化的思考

一、前言 最近 ChatGPT 的 Plus 用户在 GPT-4 中新增了插件功能&#xff0c; GPT 在插件的加持下如虎添翼。 那么常用的插件是哪些&#xff1f;插件化是什么&#xff1f;插件化有什么好处&#xff1f;插件化和我们日常开发中哪些设计模式思想一致&#xff1f;GPT 的插件还存在…

苹果汽车售价或低于 10 万美元;微软将开发一站式“超级应用”;Adobe 将销售 AI 生成图片|极客头条...

「极客头条」—— 技术人员的新闻圈&#xff01; CSDN 的读者朋友们早上好哇&#xff0c;「极客头条」来啦&#xff0c;快来看今天都有哪些值得我们技术人关注的重要新闻吧。 整理 | 梦依丹 出品 | CSDN&#xff08;ID&#xff1a;CSDNnews&#xff09; 一分钟速览新闻点&#…

其他:管理员账户已被禁用

windows常用的命令&#xff1a; winr 运行 netplwiz 点高级--再点高级&#xff08;进入本地用户和组&#xff09; winr 运行 services.msc 打开 服务(本地) winr 运行 msconfig 进入系统配置 &#xff08;一般用户安全模式进入退出&#xff09; winr 运行 gpedit.msc &…

利用ChatGPT的力量构建数据科学和机器学习项目

学习利用ChatGPT的力量构建数据科学和机器学习项目。欢迎参加课程-ChatGPT for DATA SCIENCE AND MACHINE learning ChatGPT是一个人工智能驱动的对话代理&#xff0c;基于OpenAI开发的GPT 3.5架构。作为一种语言模型&#xff0c;ChatGPT能够理解和生成对各种主题的类似人类的响…

杭州一公司开20万月薪抢AIGC算法工程师;SpaceX「星舰」发射任务失败;华为宣布实现ERP自主可控,突破封锁|极客头条

「极客头条」—— 技术人员的新闻圈&#xff01; CSDN 的读者朋友们早上好哇&#xff0c;「极客头条」来啦&#xff0c;快来看今天都有哪些值得我们技术人关注的重要新闻吧。 整理 | 梦依丹 出品 | CSDN&#xff08;ID&#xff1a;CSDNnews&#xff09; 一分钟速览新闻点&…

LeetCode股票买卖问题通用解法

问题描述 给定一个数组&#xff0c;它的第 i i i 个元素为一支给定的股票在第 i i i 天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成 k k k 笔交易。 注意&#xff1a;你不能同时参与多笔交易&#xff0c;你必须在再次购买前出售掉之前的股票。 示例…

为了会做题而学习股票定价

目录 红利收益率。 市盈率。 折现现金流方法&#xff08;DCF&#xff09;。 折现红利模型&#xff08;DDM&#xff09;。 不变增长率&#xff0c;折现红利模型。 盈利和投资机会。 应用举例。 红利收益率。 市盈率。 折现现金流方法&#xff08;DCF&#xff09;。 认为…

【牛客刷题-算法】NC7 买卖股票的最好时机(一)

个人主页&#xff1a;清风莫追 系列专栏&#xff1a;牛客刷题——数据结构与算法 文章目录 1.题目描述2.算法设计思路3.代码实现4.运行结果 1.题目描述 描述 假设你有一个数组prices&#xff0c;长度为n&#xff0c;其中prices[i]是股票在第i天的价格&#xff0c;请根据这个价…

leetcode每日一题·买卖股票问题(Python)

leetcode每日一题买卖股票问题(Python) 买卖股票的最佳时机(股票最大利润) 题目链接 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。…

【题解】股票买卖

题目描述 最近越来越多的人都投身股市&#xff0c;阿福也有点心动了。谨记着“股市有风险&#xff0c;入市需谨慎”&#xff0c;阿福决定先来研究一下简化版的股票买卖问题。 假设阿福已经准确预测出了某只股票在未来N天的价格&#xff0c;他希望买卖两次&#xff0c;使得获得的…

一道关于股票买卖的算法编程题

前段时间在segmentfault回答了一个关于算法的问题,感觉很有趣,记录下来. 题目是这样的: 给定数组n&#xff0c;包含n天股票的价格price. 一个人一共最多可以买2手股票&#xff0c;但在第一手股票卖出前不能买入第二手股票。如果不买&#xff0c;收益为0.假设每手只买1股。计算…

股票买卖题型 详解

股票买卖题型 买卖股票最佳时机 ​ 第一题贪心算法应该快很多 就 不讲 。 此类问题 思路大致一致 ​ 第二题也可用贪心做 ans max(ans, ansprices[i]-prices[i-1]); 分析&#xff1a; 共有两个属性值 &#xff0c; 未持有 和持有股票 定义 f[ i ] [ 2 ] f[ i ] [ 0 ]表示 第…

【算法题】股票买卖问题解法详解

本解法是股票问题的通用解法&#xff0c;在leetcode上对应以下题&#xff1a; 买卖股票的最佳时机 买卖股票的最佳时机 II 买卖股票的最佳时机 III 买卖股票的最佳时机 IV 买卖股票的最佳时机含手续费 最佳买卖股票时机含冷冻期 下面来说通用解法&#xff1a; 这类问题…

贪心算法(股票买卖例题)

贪心算法定义&#xff1a; 贪心算法&#xff08;又称贪婪算法&#xff09;是指&#xff0c;在对 问题求解时&#xff0c;总是做出在当前看来是最好的选择。也就是说&#xff0c;不从整体最优上加以考虑&#xff0c;他所做出的是在某种意义上的局部 最优解。 贪心算法不是对所有…

买卖股票的最佳时机 II -数学推导证明贪心思路 -leetcode122

问题说明来源leetcode 一、问题描述: 122. 买卖股票的最佳时机 II 难度中等1941 给你一个整数数组 prices &#xff0c;其中 prices[i] 表示某支股票第 i 天的价格。 在每一天&#xff0c;你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可…

产品开发利器:Axure及实例

我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版&#xff0c;欢迎购买。点击进入详情 文章目录 简介Axure优点Axure和蓝湖Axure实例 简介 Axure是一个最便捷、最热门的界面原型设计工具&#xff0c;它不需要任何编程或写代码基础&#xff0c;就可以设…

ChatGPT伪原创:智能AI助手助力文章创作

智能AI助手助力文章创作 随着人工智能技术的不断发展&#xff0c;智能AI助手正逐渐成为文章创作的得力工具。无论是在写作过程中提供灵感和创意&#xff0c;还是在文章编辑和校对中提供帮助&#xff0c;智能AI助手都能为作者节省时间和精力&#xff0c;提高文章质量。本文将从…