matlab解方程

工具/材料

matlab 2016a

打开matlab,首先定义变量x:

syms x;

4de5527b21805a69e2ca3701f98802f3.png

matlab中solve函数的格式是solve(f(x), x),求解的是f(x) = 0的解。

第一个例子,求解最常见的一元二次方程x^2-3*x+1=0:

solve(x^2-3*x+1,x),解出的结果用精确的根式表示。

ac1b853ea4b8fd19a2b9200a876870dd.png

matlab解出的根不仅包含实根,也包含复根,例如求解三次方程x^3+1=0:

solve(x^3+1,x)

我们知道该方程有一对共轭复根,matlab也可以解出它的解。

d58f6175381021427bcdfd8074527ef0.png

对于超出5次(含)以上的一元函数,有时无法用solve指令求的对应的根,如下图所示。这时可以使用roots命令求解。roots命令的参数是方程的各个系数按高次幂到低次幂排列成的向量,例如x^5+3*x^4-5*x^3+4*x^2-6*x+2=0,如果用solve指令得到的结果不能令人满意,而用roots就可以得到满意的结果。

4419c0649f8855689e12d0fe72fdbb02.png

对于非多项式方程,只能使用solve求解。例如求解exp(-x)-x^2+3=0的解如下。通过黄色的警告可以看出,这样的方程没有解析解,与我们已知的知识相同。

d2e3426be09e593dbbc2fcc368907bd6.png

最后一类方程,是一元一次方程组。这是matlab最擅长的运算,可以使用矩阵进行求解。对于齐次线性方程来讲,使用null(A,'r')。其中'r'表示使用简化阶梯型行列式求解。对于如下的方程,可以解得线性无关的一组解。这样,我们还可以引入常量k1与k2表达通解。

a7d684606eb91964d372b6296bae7ea7.png

8fe03145f045a00d068446b3cb405df0.png

对于线性非齐次的解,可以使用linsolve(A,b)。其中A是系数矩阵,b是非齐次项(如果b是多列矩阵,意味着解多个砼系数不同齐次项的方程组)。对于图中的方程组,可已这样求解。

03b69f8ad128924b7cd1e60816b5f6dc.png

0459f2456a9d90a7509b8f25e4de61ab.png

特别提示

matlab求解方程的方法有很多,要找到适合自己需要的方法,需要多加练习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/43986.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

欧拉法与梯形法求解微分方程【含matlab源代码】

本文介绍两种入门级求解微分方程的方法 —— 梯形法与欧拉法。 将上述方程组改写成matlab语言: function F fun(t,Y)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % 程序作…

【计算方法】python求解常微分方程|显式欧拉、改进欧拉、龙格库塔

显式欧拉 import numpy as np from scipy.integrate import odeintdef f(x,y):return y-2*x/y def f_ode(y,x):return y-2*x/ydef Explicit_Euler(f,a,b,y0,h):x_p np.linspace(a,b,int(1/h)1)n len(x_p)value np.zeros(n)value[0] y0for i in range(1,n):value[i] value…

【Matlab】求解微分方程{上}(通解和特解)

求解微分方程 desolve函数实例1实例2实例3实例4 求解有条件的微分方程微分方程显示隐式解未找到显式解决方案时查找隐式解决方案求微分方程级数解为具有不同单边限制的函数指定初始条件(特解)练习题 desolve函数 S dsolve(eqn)求解微分方程eqn&#xf…

常微分方程数值解——差商、欧拉公式详细推导及代码实现

引言 在自然科学的许多领域特别是科学与工程计算中,经常会遇到常微分方程的求解问题。然而只有非常少数且十分简单的微分方程可以用初值等方法求得它们的解,多数只能近似方法求解。 一、预备知识 (差商的推导) 二、 一阶常微分方…

PINN解偏微分方程实例3(Allen-Cahn方程)

PINN解偏微分方程实例3之Allen-Cahn方程 1. Allen-Cahn方程2. 损失函数如下定义3. 代码4. 实验细节及复现结果参考资料 1. Allen-Cahn方程 考虑偏微分方程如下: u t − 0.0001 u x x 5 u 3 − 5 u 0 u ( 0 , x ) x 2 c o s ( π x ) u ( t , − 1 ) u ( t , 1 …

chatgpt赋能python:用Python解方程

用Python解方程 介绍 解方程是数学中最基础的技能之一,也是很多实际问题中必须掌握的技能。Python是一种功能强大的编程语言,通过它,我们可以编写程序来解方程。在本篇文章中,我们将介绍如何使用Python来解方程。 Python中的方…

PINN解偏微分方程--程函方程

目录 前言 一、什么是程函方程? 二、配置环境及库的导入 三、构建训练数据集 四、用Pytorch搭建PINN网络 1.网络搭建 2.一些基本参数变量的确定以及数据格式的转换 五、用Pytorch搭建PINN网络 六、查看loss下降情况 七、导入网络模型,输入验证数据&#…

【免费下载】2023年1月份热门报告合集(附下载链接)

省时查报告-专业、及时、全面的报告库 省时查方案-专业、及时、全面的方案库 2023年1月份省时查报告平台十大热门报告新鲜出炉,本期的热门报告关键词有:2023、趋势、投资、房地产、展望、消费、短视频、抖音、直播电商、零售等;快来看看都谁上…

【免费下载】2023年2月份热门报告合集(附下载链接)

省时查报告-专业、及时、全面的报告库 省时查方案-专业、及时、全面的方案库 2023年2月份省时查报告平台十大热门报告新鲜出炉,本期的热门报告关键词有:ChatGPT、AIGC、人工智能、情人节、营销、直播电商、跨境电商、数字化等;快来看看都谁上…

【免费下载】2023年3月份热门报告合集(附下载链接)

省时查报告-专业、及时、全面的报告库 省时查方案-专业、及时、全面的方案库 【限时免费】无需翻墙,ChatGPT4直接使用 2023年2月十大热门报告盘点 2023年3月份省时查报告平台十大热门报告新鲜出炉,本期的热门报告关键词有:ChatGPT、GPT4、小红…

初学Python到月入过万最快的兼职途径(纯干货)

不错过任何一次干赚钱干货 1.兼职薪资,附行哥工资单 2.兼职门槛,附学习知识清单 3.兼职途径,附入职考核过程 4.行哥的兼职感受 答应行友的第一篇赚钱干货推文来啦,行哥第一个在读书期间通过兼职赚到的10w收入,这也…

AIGC|我让AI来写今年高考作文

作者:谢凯 | 神州数码云基地-需求分析师 目录 一、人工智能究竟强在哪 //以ChatGPT为例,人工智能其优势何在? 二、BingAI如何处理高考作文 三、总结 一、人工智能究竟强在哪 随着ChatGPT(Chat Generative Pre-trained Transfo…

ChatGPT|谷歌首席决策科学家Cassie Kozyrkov介绍 ChatGPT

文章目录 介绍 ChatGPT!对抗网络GANs使用 ChatGPT 编写代码 大揭秘一些自动生成的废话 介绍 ChatGPT! 原文:地址 作者:Cassie Kozyrkov 谷歌首席决策科学家。 ❤️ 统计、ML/AI、数据、双关语、艺术、戏剧、决策科学。 有句话介绍…

新媒体如何借势进行热点营销

互联网营销时代,眼花缭乱的信息在消费者眼中总是昙花一现,碎片化的信息分散着当代人的注意力。为了聚焦用户碎片化的注意力,吸引消费者眼球,“蹭热点”就成为了各大品牌方“借势”惯用的方法。“蹭热点”其实就是借势营销&#xf…

2022年的告别

契子 2022年即将过去,没想到年末成了杨过。坐在家里电脑前,看了看窗外,回想了一整年的时光,虽然很多时刻有过彷徨迷茫,但总归都是成长。今年看了不少人性和哲学相关的书籍,其主要原因是因为在管理方面&…

基于Qt的网络音乐播放器(五)实现歌词滚动显示

2020博客之星年度总评选进行中:请为74号的狗子投上宝贵的一票! 我的投票地址:点击为我投票 文章目录 1.思路和效果图2.歌词的解析与存储3.onDurationChanged()4.总结 网络播放器系列: qt 布局和样式表基于Qt的网络音乐播放器&am…

为什么停更ROS2机器人课程-2023-

机器人工匠阿杰肺腑之言: 我放弃了ROS2课程 真正的危机不是同行竞争,比如教育从业者相互竞争不会催生ChatGPT…… 技术变革的突破式发展通常是新势力带来的而非传统行业的升级改革。 2013年也就是10年前在当时主流视频网站开启分享: 比如 …

chatgpt赋能Python-mac上的python

在Mac上使用Python编程的好处 作为一名有10年Python编程经验的工程师,我必须说Mac是一个出色的编程工作台。Mac操作系统本质上就是一个整合了各种开发工具的平台,为Python编程提供了很好的支持。这篇文章将介绍在Mac上使用Python编程的好处。 简单易用…

chatgpt赋能Python-python_bonjour

Python Bonjour: 通过Python实现Bonjour协议 介绍 Bonjour是苹果公司推出的一种新型、免配置的网络协议,它可以使局域网中的电脑、打印机、电话等各种设备自动发现及配置,从而促进了网络设备的普及。Python作为一种高效、简洁、易学的语言&…

chatgpt赋能Python-python_heic

Python处理HEIC文件-从未如此容易 如果你是摄影师或者只是经常在移动设备上拍照的人,你可能已经遇到过HEIC文件的问题。HEIC是苹果公司最新的图像格式,它在保存高质量图像的同时节省了存储空间。但是,许多人在处理HEIC文件时遇到了问题&…