1978-2023年全国国内生产总值、分产业分行业增加值相关指标数据

1978-2023年全国国内生产总值、分产业分行业增加值相关指标数据

1、时间:1978-2023年

2、指标:国内生产总值(亿元)、第一产业增加值(亿元)、第二产业增加值(亿元)、第三产业增加值(亿元)、人均国内生产总值(元)、国民总收入指数(上年=100)、国内生产总值指数(上年=100)、第一产业增加值指数(上年=100)、第二产业增加值指数(上年=100)、第三产业增加值指数(上年=100)、人均国内生产总值指数(上年=100)、国民总收入指数(1978年=100)、国内生产总值指数(1978年=100)、第一产业增加值指数(1978年=100)、第二产业增加值指数(1978年=100)、第三产业增加值指数(1978年=100);

人均国内生产总值指数(1978年=100)、不变价国内生产总值(亿元)、、三次产业构成-国内生产总值(%)、三次产业构成-第一产业增加值(%)、三次产业构成-第二产业增加值(%)、三次产业构成-第三产业增加值(%)、三次产业贡献率(%)、第一产业对GDP的贡献率(%)、第二产业对GDP的贡献率(%)、第三产业对GDP的贡献率(%);

国内生产总值增长(百分点)、第一产业对国内生产总值增长的拉动(百分点)、第二产业对国内生产总值增长的拉动(百分点)、第三产业对国内生产总值增长的拉动(百分点)、国内生产总值(亿元)、农林牧渔业增加值(亿元)、工业增加值(亿元)、建筑业增加值(亿元)、批发和零售业增加值(亿元)、交通运输、仓储和邮政业增加值(亿元)、住宿和餐饮业增加值(亿元)、金融业增加值(亿元)、房地产业增加值(亿元)、其他行业增加值(亿元);

国内生产总值指数(上年=100)、农林牧渔业增加值指数(上年=100)、工业增加值指数(上年=100)、建筑业增加值指数(上年=100)、批发和零售业增加值指数(上年=100)、交通运输、仓储和邮政业增加值指数(上年=100)、住宿和餐饮业增加值指数(上年=100)、金融业增加值指数(上年=100)、房地产业增加值指数(上年=100);

其他行业增加值指数(上年=100)、国内生产总值指数(1978年=100)、农林牧渔业增加值指数(1978年=100)、工业增加值指数(1978年=100)、建筑业增加值指数(1978年=100)、批发和零售业增加值指数(1978年=100)、交通运输、仓储和邮政业增加值指数(1978年=100)、住宿和餐饮业增加值指数(1978年=100)、金融业增加值指数(1978年=100)、房地产业增加值指数(1978年=100)、其他行业增加值指数(1978年=100);

分行业增加值构成-国内生产总值(%)、分行业增加值构成-农林牧渔业增加值(%)、分行业增加值构成-工业增加值(%)、分行业增加值构成-建筑业增加值(%)、分行业增加值构成-批发和零售业增加值(%)、分行业增加值构成-交通运输、仓储和邮政业增加值(%)、分行业增加值构成-住宿和餐饮业增加值(%)、分行业增加值构成-金融业增加值(%)、分行业增加值构成-房地产业增加值(%)、分行业增加值构成-其他行业增加值(%)

3、来源:国家统计J、统计公报

4、范围:全国

5、下载链接:

1978-2023年全国国内生产总值、分产业行业增加值等指标数据icon-default.png?t=N7T8https://download.csdn.net/download/m0_71334485/88801083

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/255318.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SQL 表信息 | 统计 | 脚本

介绍 统计多个 SQL Server 实例上多个数据库的表大小、最后修改时间和行数,可以使用以下的 SQL 查询来获取这些信息。 脚本 示例脚本: DECLARE Query NVARCHAR(MAX)-- 创建一个临时表用于存储结果 CREATE TABLE #TableSizes (DatabaseName NVARCHAR…

2024Node.js零基础教程(小白友好型),nodejs新手到高手,(六)NodeJS入门——http模块

047_http模块_获取请求行和请求头 hello,大家好,那第二节我们来介绍一下如何在这个服务当中来提取 HTT 请求报文的相关内容。首先先说一下关于报文的提取的方法,我在这个文档当中都已经记录好了,方便大家后续做一个快速的查阅。 …

Shell脚本编程

文章目录 一、简介二、变量变量命名使用变量只读变量删除变量变量种类 三、数组四、算数运算五、条件测试数值测试字符串测试文件测试组合测试 六、选择执行七、用户交互read命令 八、循环语句for循环while循环until循环 九、函数十、调试脚本十一、环境配置bash配置文件案例&a…

Matlab使用点云工具箱进行点云配准ICP\NDT\CPD

一、代码 主代码main.m,三种配准方法任选其一 % 读取点云文件 source_pc pcread(bun_zipper.ply); target_pc pcread(bun_zipper2.ply);% 下采样 ptCloudA point_downsample(source_pc); ptCloudB point_downsample(target_pc);% 配准参数设置 opt param_set…

基于YOLOv8的暗光低光环境下(ExDark数据集)检测,加入多种优化方式---自研CPMS注意力,效果优于CBAM ,助力自动驾驶(二)

💡💡💡本文主要内容:详细介绍了暗光低光数据集检测整个过程,从数据集到训练模型到结果可视化分析,以及如何优化提升检测性能。 💡💡💡加入 自研CPMS注意力 mAP0.5由原始的0.682提升…

大型语言模型(LLM)的优势、劣势和风险

最近关于大型语言模型的奇迹()已经说了很多LLMs。这些荣誉大多是当之无愧的。让 ChatGPT 描述广义相对论,你会得到一个非常好(且准确)的答案。然而,归根结底,ChatGPT 仍然是一个盲目执行其指令集…

使用UMAP降维可视化RAG嵌入

大型语言模型(LLMs)如 GPT-4 已经展示了出色的文本理解和生成能力。但它们在处理领域特定信息方面面临挑战,比如当查询超出训练数据范围时,它们会产生错误的答案。LLMs 的推理过程也缺乏透明度,使用户难以理解达成结论…

【Linux】make和Makefile

目录 make和Makefile make和Makefile 我们使用vim编辑器的时候,在一个文件里写完代码要进行编译,要自己输入编译的指令。有没有一种可以进行自动化编译的方法——makefile文件,它可以指定具体的编译操作,写好makefile文件&#x…

新零售的升维体验,摸索华为云GaussDB如何实现数据赋能

新零售商业模式 商业模式通常是由客户价值、企业资源和能力、盈利方式三个方面构成。其最主要的用途是为实现客户价值最大化。 商业模式通过把能使企业运行的内外各要素整合起来,从而形成一个完整的、高效率的、具有独特核心竞争力的运行系统,并通过最…

【el-tree 文字过长处理方案】

文字过长处理方案 一、示例代码二、关键代码三、效果图 一、示例代码 <divstyle"height: 600px;overflow: auto"class"text item"><el-treeref"tree":data"treeData":props"defaultProps"class"filter-tree&…

fast.ai 深度学习笔记(四)

深度学习 2&#xff1a;第 2 部分第 8 课 原文&#xff1a;medium.com/hiromi_suenaga/deep-learning-2-part-2-lesson-8-5ae195c49493 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 来自 fast.ai 课程的个人笔记。随着我继续复习课程以“真正”理解它&#xff0c;这…

6.0 Zookeeper session 基本原理详解教程

客户端与服务端之间的连接是基于 TCP 长连接&#xff0c;client 端连接 server 端默认的 2181 端口&#xff0c;也就 是 session 会话。 从第一次连接建立开始&#xff0c;客户端开始会话的生命周期&#xff0c;客户端向服务端的ping包请求&#xff0c;每个会话都可以设置一个…

数据分析基础之《pandas(6)—高级处理》

一、缺失值处理 1、如何处理nan 两种思路&#xff1a; &#xff08;1&#xff09;如果样本量很大&#xff0c;可以删除含有缺失值的样本 &#xff08;2&#xff09;如果要珍惜每一个样本&#xff0c;可以替换/插补&#xff08;计算平均值或中位数&#xff09; 2、判断数据是否…

爬虫练习——动态网页的爬取(股票和百度翻译)

动态网页也是字面意思&#xff1a;实时更新的那种 还有就是你在股票这个网站上&#xff0c;翻页。他的地址是不变的 是动态的加载&#xff0c;真正我不太清楚&#xff0c;只知道他是不变的。如果用静态网页的方法就不可行了。 静态网页的翻页&#xff0c;是网址是有规律的。 …

【正在更新】从零开始认识语音识别:DNN-HMM混合系统语音识别(ASR)原理

摘要 | Abstract TO-BE-FILLED 1.前言 | Introduction 近期想深入了解语音识别(ASR)中隐马尔可夫模型(HMM)和深度神经网络-隐马尔可夫(DNN-HMM)混合模型&#xff0c;但是尽管网络上有许多关于DNN-HMM的介绍&#xff0c;如李宏毅教授的《深度学习人类语言处理》[1]&#xff0c;…

office 2021安装教程(官方自动批量激活,无付费)

全程不需要第三方软件&#xff0c;所有用到的工具都是微软官方的&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 基于KMS的 GVLK&#xff1a;https://learn.microsoft.com/zh-cn/deployoffice/vlactivation/gvlks 首先我们需要去下载 office 软件部署工具&a…

二、数据结构

链表 单链表 https://www.acwing.com/problem/content/828/ #include<iostream> using namespace std; const int N 1e5 10; //head:头节点的指向 e[i]:当前节点i的值 ne[i]:当前节点i的next指针 idx:当前存储的点 int head, e[N], ne[N], idx;//初始化 void i…

01动力云客之环境准备+前端Vite搭建VUE项目入门+引入Element PLUS

1. 技术选型 前端&#xff1a;Html、CSS、JavaScript、Vue、Axios、Element Plus 后端&#xff1a;Spring Boot、Spring Security、MyBatis、MySQL、Redis 相关组件&#xff1a;HiKariCP&#xff08;Spring Boot默认数据库连接池&#xff09;、Spring-Data-Redis&#xff08;S…

【多模态大模型】视觉大模型SAM:如何使模型能够处理任意图像的分割任务?

SAM&#xff1a;如何使模型能够处理任意图像的分割任务&#xff1f; 核心思想起始问题: 如何使模型能够处理任意图像的分割任务&#xff1f;5why分析5so分析 总结子问题1: 如何编码输入图像以适应分割任务&#xff1f;子问题2: 如何处理各种形式的分割提示&#xff1f;子问题3:…

43.1k star, 免费开源的 markdown 编辑器

简介 项目名&#xff1a; MarkText-- 简单而优雅的开源 Markdown 编辑器 Github 开源地址&#xff1a; https://github.com/marktext/marktext 官网&#xff1a; https://www.marktext.cc/ 支持平台&#xff1a; Linux, macOS 以及 Windows。 操作界面&#xff1a; 在操作界…