【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合

【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合

在这里插入图片描述

https://arxiv.org/pdf/2402.10979


目录

文章目录

  • 【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合
    • 目录
      • 摘要
      • 研究背景
      • 问题与挑战
      • 如何解决
      • 核心创新点
      • 算法模型
      • 实验效果(包含重要数据与结论)
      • 相关工作
      • 后续优化方向
    • 后记


SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合

摘要

本文介绍了SportsMetrics,这是一个旨在评估大型语言模型(LLMs)在数值推理和信息融合能力方面的新基准。通过提供详细的体育比赛逐场描述,挑战LLMs处理新游戏规则、更长的描述、混乱的叙述和分析游戏摘要中的关键统计数据。在NBA和NFL比赛上的广泛实验表明,SportsMetrics能够评估LLMs在这些任务上的性能。

研究背景

大型语言模型(LLMs)在处理非结构化文本和结构化数据方面展现出巨大潜力。然而,将文本和数值数据融合在一起存在显著挑战,包括处理实体和数字、处理数据不一致性和冗余,以及开发如构建工作记忆以管理复杂数据查询的规划能力。
在这里插入图片描述

问题与挑战

LLMs需要在处理混合文本和数值数据时,能够整合信息、链接实体、聚合数字,并处理数据中的不一致性。此外,信息融合的挑战在于从多个文本源合成信息以得出有意义的结论。
在这里插入图片描述

如何解决

SportsMetrics通过四个新颖的任务来评估LLMs在对抗性场景下的表现,包括适应新游戏规则、处理长篇游戏描述、管理混乱的游戏叙述和分析游戏摘要中的关键统计数据。这些任务要求LLMs开发工作记忆以跟踪游戏统计数据,并进行推理。
在这里插入图片描述

核心创新点

  1. SportsMetrics基准:提供了一个评估LLMs数值推理和数据融合能力的基准。
  2. 对抗性场景:设计了包括新游戏规则、长篇描述、混乱叙述等对抗性场景来测试LLMs的适应性和鲁棒性。
  3. 工作记忆:要求LLMs开发工作记忆来管理复杂的数据查询和更新关键游戏统计数据。

算法模型

SportsMetrics基准包括以下几个关键步骤:

  1. 命名实体识别与实体类型识别:提取实体及其类型,作为构建句子图的桥梁。
  2. 句子图构建:构建句子图以捕捉事实句子之间的语义重叠。
  3. 最小支配集近似:使用贪心算法找到覆盖整个句子图的最小句子集合。
  4. 问题生成:将选定的事实句子转换为问答对。
  5. 提示式数据增强:通过提示调整扩展最近在提示调整中取得的进展,为MINPROMPT创建增强数据。
    在这里插入图片描述

实验效果(包含重要数据与结论)

实验在28,492场NBA比赛和5,867场NFL比赛的数据上进行,涵盖了2002年至2023年的数据。结果显示,长上下文LLMs在所有任务中显著优于标准LLMs。在NBA数据集中,GPT-3.5-Turbo-1106在除∆GScore外的所有任务中表现最佳,而GeminiPro在∆GScore中略胜一筹。在NFL数据集中,GPT-4-1106-Preview表现最佳,其次是Claude-2.1和GPT3.5-Turbo-1106。
在这里插入图片描述
在这里插入图片描述

相关工作

相关工作主要集中在评估LLMs的信息融合能力,包括多文档摘要、聊天机器人竞技场(Chatbot Arena)和多任务语言理解(MMLU)。此外,还有研究探讨了从混合文本和数值记录中组合信息的挑战。

后续优化方向

尽管SportsMetrics在评估LLMs方面取得了进展,但仍存在一些局限性和未来的优化方向:

  1. 泛化能力:研究结果的泛化能力到其他运动,如足球和板球,这些运动的玩法和规则可能以独特的方式挑战LLMs。
  2. 对抗性场景的实用性:研究探索了多种对抗性场景,但这些极端变化在现实世界条件下可能不常见,模型在这些场景下的表现可能不会转化为其他分析任务中的改进。
  3. 评分系统的有效性:评分系统在评估LLMs在不同情境下的数值推理能力方面的效果,如多人在线游戏或协作工作空间,仍需验证。

后记

如果您对我的博客内容感兴趣,欢迎三连击 ( 点赞、收藏和关注)和留下您的评论,我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型,深度学习和计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/475984.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

39页PDF | 毕马威_数据资产运营白皮书(限免下载)

一、前言 《毕马威数据资产运营白皮书》探讨了数据作为新型生产要素在企业数智化转型中的重要性,提出了数据资产运营的“三要素”(组织与意识、流程与规范、平台与工具)和“四重奏”(数据资产盘点、评估、治理、共享)…

【UE5】使用基元数据对材质传参,从而避免新建材质实例

在项目中,经常会遇到这样的需求:多个模型(例如 100 个)使用相同的材质,但每个模型需要不同的参数设置,比如不同的颜色或随机种子等。 在这种情况下,创建 100 个实例材质不是最佳选择。正确的做…

[STBC]

空时分组编码STBC(Space Time Block Coding): //一个数据流通过多个天线发射发送,硬件编码器 STBC概念是从MIMO技术衍生出来的,目的是在多天线系统中提高数据传输的可靠性和传输距离。在rx(接收天线)和tx&…

241120学习日志——[CSDIY] [InternStudio] 大模型训练营 [09]

CSDIY:这是一个非科班学生的努力之路,从今天开始这个系列会长期更新,(最好做到日更),我会慢慢把自己目前对CS的努力逐一上传,帮助那些和我一样有着梦想的玩家取得胜利!!&…

PCB 间接雷击模拟

雷击是一种危险的静电放电事件,其中两个带电区域会瞬间释放高达 1 千兆焦耳的能量。雷击就像一个短暂而巨大的电流脉冲,会对建筑物和电子设备造成严重损坏。雷击可分为直接和间接两类,其中间接影响是由于感应能量耦合到靠近雷击位置的物体。间…

IDEA2019搭建Springboot项目基于java1.8 解决Spring Initializr无法创建jdk1.8项目 注释乱码

后端界面搭建 将 https://start.spring.io/ 替换https://start.aliyun.com/ 报错 打开设置 修改如下在这里插入代码片 按此方法无果 翻阅治疗后得知 IDEA2019无法按照网上教程修改此问题因此更新最新idea2024或利用插件Alibaba Clouod Toolkit 换用IDEA2024创建项目 下一步…

单向C to DP视频传输解决方案 | LDR6500

LDR6500D如何通过Type-C接口实现手机到DP接口的单向视频传输 在当今数字化浪潮中,投屏技术作为连接设备、共享视觉内容的桥梁,其重要性日益凸显。PD(Power Delivery)芯片,特别是集成了Type-C接口与DisplayPort&#xf…

Leetcode 第 143 场双周赛题解

Leetcode 第 143 场双周赛题解 Leetcode 第 143 场双周赛题解题目1:3345. 最小可整除数位乘积 I思路代码复杂度分析 题目2:3346. 执行操作后元素的最高频率 I思路代码复杂度分析 题目3:3347. 执行操作后元素的最高频率 II题目4:33…

Spark 之 Aggregate

Aggregate 参考链接: https://github.com/PZXWHU/SparkSQL-Kernel-Profiling 完整的聚合查询的关键字包括 group by、 cube、 grouping sets 和 rollup 4 种 。 分组语句 group by 后面可以是一个或多个分组表达式( groupingExpressions )…

【IDEA】解决总是自动导入全部类(.*)问题

文章目录 问题描述解决方法 我是一名立志把细节说清楚的博主,欢迎【关注】🎉 ~ 原创不易, 如果有帮助 ,记得【点赞】【收藏】 哦~ ❥(^_-)~ 如有错误、疑惑,欢迎【评论】指正探讨,我会尽可能第一时间回复…

如何快速将Excel数据导入到SQL Server数据库

工作中,我们经常需要将Excel数据导入到数据库,但是对于数据库小白来说,这可能并非易事;对于数据库专家来说,这又可能非常繁琐。 这篇文章将介绍如何帮助您快速的将Excel数据导入到sql server数据库。 准备工作 这里&…

在centos7中安装SqlDeveloper的Oracle可视化工具

1.下载安装包 (1)在SqlDeveloper官网下载(Oracle SQL Developer Release 19.2 - Get Started)对应版本的安装包即可(安装包和安装命令如下): (2)执行完上述命令后&#x…

【动手学深度学习Pytorch】4. 神经网络基础

模型构造 回顾一下感知机。 nn.Sequential():定义了一种特殊的module。 torch.rand():用于生成具有均匀分布的随机数,这些随机数的范围在[0, 1)之间。它接受一个形状参数(shape),返回一个指定形状的张量&am…

Spring Boot + Vue 基于 RSA 的用户身份认证加密机制实现

Spring Boot Vue 基于 RSA 的用户身份认证加密机制实现 什么是RSA?安全需求介绍前后端交互流程前端使用 RSA 加密密码安装 jsencrypt库实现敏感信息加密 服务器端生成RSA的公私钥文件Windows环境 生成rsa的公私钥文件Linux环境 生成rsa的公私钥文件 后端代码实现返…

一键部署 200+ 开源软件的 Websoft9 面板,Github 2k+ 星星

Websoft9面板是一款基于Web的PaaS/Linux面板,可用于在自己的服务器上一键部署200多种热门开源应用,在Github上获得了2k星星。 特点与优势 丰富的开源软件集成:涵盖数据库、Web服务器、企业建站、电商系统、教育系统、中间件、大数据工具等多…

NLP论文速读(MPO)|通过混合偏好优化提高多模态大型语言模型的推理能力

论文速读|Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models 论文信息: 简介: 本文探讨的背景是多模态大型语言模型(MLLMs)在多模态推理能力上的局限性,尤其是在链式…

动态规划子数组系列一>等差数列划分

题目&#xff1a; 解析&#xff1a; 代码&#xff1a; public int numberOfArithmeticSlices(int[] nums) {int n nums.length;int[] dp new int[n];int ret 0;for(int i 2; i < n; i){dp[i] nums[i] - nums[i-1] nums[i-1] - nums[i-2] ? dp[i-1]1 : 0;ret dp[i…

用 React18 构建Tic-Tac-Toe(井字棋)游戏

下面是一个完整的 Tic-Tac-Toe&#xff08;井字棋&#xff09;游戏的实现&#xff0c;用 React 构建。包括核心逻辑和组件分离&#xff0c;支持两人对战。 1. 初始化 React 项目&#xff1a; npx create-react-app tic-tac-toe cd tic-tac-toe2.文件结构 src/ ├── App.js…

前端—Cursor编辑器

在当今快速发展的软件开发领域&#xff0c;效率和质量是衡量一个工具是否优秀的两个关键指标。今天&#xff0c;我要向大家推荐一款革命性的代码编辑器——Cursor&#xff0c;它集成了强大的AI功能&#xff0c;旨在提高开发者的编程效率。以下是Cursor编辑器的详细介绍和推荐理…

uniapp页面样式和布局和nvue教程详解

uniapp页面样式和布局和nvue教程 尺寸单位 uni-app 支持的通用 css 单位包括 px、rpx px 即屏幕像素。rpx 即响应式px&#xff0c;一种根据屏幕宽度自适应的动态单位。以750宽的屏幕为基准&#xff0c;750rpx恰好为屏幕宽度。屏幕变宽&#xff0c;rpx 实际显示效果会等比放大…