matlab快速解方程,matlab如何解方程 matlab解方程 matlab如何解方程

matlab解方程应该怎么解呢?在平常的学习当中,利用matlab解方程,绝对不是一门轻易掌握的学科。我们应该如何利用matlab解方程呢?下面相关方法分享给大家。

【matlab解方程】

1、先举一例,解方程"x^2+100*x+99=0"

在matlab ”Command Window"中输入如下命令:

x=solve('x^2+100*x+99=0','x')

回车后,matlab就求出了这个一元二次方程的解。

138c537730cab262d6218fb09a7b245d.png

x =

-1

-99

>>

2、解一元三次方程"x^3+1=0"

在matlab ”Command Window"中输入如下命令:

x=solve('x^3+1=0','x')

回车后,matlab就求出了这个一元三次方程"x^3+1=0"的解。

x =

-1

1/2+1/2*i*3^(1/2)

1/2-1/2*i*3^(1/2)

>>

matlab解出来的解有三个,其中有一个实数解,两个虚数解。

我们都知道一元三次方程在复数范围内的解有3个,matlab的解是对的。

如果我们只要"x^3+1=0”的实数解,我们只要取下面图中的第一个解“-1”。

3、求一个二元一次方程组

9x+8y=10 式1

13x+14y=12 式2

我们一般的解法是代入法,或者加减消去法。比较繁琐。

这里我们只需输入如下命令即可求出解:

[x,y]=solve('9*x+8*y=10','13*x+14*y=12','x','y')

回车后,matlab就求出了这个二元一次方程组的解。

x =

2

y =

-1

matlab解方程分享给你。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/44003.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matlab: 解一元多次方程与复杂的一元多次方程

1、解 syms x eqx^22*x1; ssolve(eq,x)结果: s -1-1 这里使用到syms x,意思是定义一个变量 x, 之后可以使用这个变量构造表达式。 solve(eq,x)是将x作为求解变量,求解eq0的结果。 2、比如需要求变量t, 已知k3, p6; 中间及经过 , , …

MMA-mathematica数值求解非线性偏微分方程组

参考:mathematica.pdf 参考:MATHEMATICA微分方程.pdf 数学微分方程,第三版,有两个目的。 首先,我们介绍和讨论在典型的本科和研究生课程中所涵盖的主题,包括拉普拉斯变换、傅立叶级数、特征值问题和边值问题…

MATLAB怎么解方程解,怎么用Matlab解方程?

工具/材料 matlab 2016a 打开matlab,首先定义变量x: syms x; matlab中solve函数的格式是solve(f(x), x),求解的是f(x) 0的解。 第一个例子,求解最常见的一元二次方程x^2-3*x10: solve(x^2-3*x1,x),解出的结果用精确的…

MATLAB用solve求解普通二元高次方程

MATLAB用solve求解普通二元高次方程 先说问题: 有这两个式子,其中除了u和λ,其他都是已知参数。所以,不必恐慌,看着很复杂,但是这个条件一加,其实就是很简单的二元高次方程组,把2式…

常微分方程的解法 (三): 龙格—库塔(Runge—Kutta)方法 、线性多步法

常微分方程的解法求解系列博文: 常微分方程的解法 (一): 常微分方程的离散化 :差商近似导数、数值积分方法、Taylor 多项式近似 常微分方程的解法 (二): 欧拉(Euler)方法 常微分方程的解法 (三): 龙格—库塔(Runge—Kutta&…

用ode45解微分方程遇到的实际问题

最近在用ode45解微分方程数值解,试图复现论文中的图。一般来说说微分方程(组)只要按照响应的条件去撰写好对应的回调函数即可,基本没什么难度,但对于本文遇到的的这个问题,可能还需要一些技巧去实现解法&am…

MATLAB-常微分方程求解

MATLAB中可以用来求解常微分方程(组)的函数有ode23、 ode23s、 ode23t、 ode23tb 、ode45、ode15s和odel13等,见下表。它们的具体调用方法类似,为了方便后面的描述, 在后面的介绍中将使用solver统一代替它们。 函数的具体调用方法如下。 [T,Y…

Mathematica解一个精巧的差分方程

Mathematica解差分方程很方便,记住一个词就可以了RSolve或者RSolveValue就可以了。以下这个例子比较特殊,存在解析解,但是软件算不出。 问题: 已知: a [ 1 ] 1 2 a[1]\sqrt{1\over2} a[1]21​ ​ a [ n 1 ] ( 1 …

解方程C++

数学上经常需要解方程。现在有函数: f(x) 2x^57x^3100,求f(x)y解。 提示:下面是goc程序画出的函数图形,可以看出函数是单调上升的。 输入格式 第一行1个实数:y,范围在[-1000000000,1000000000]。 输出格式 一个实数x…

matlab 差分方程的解(解答qq网友)

1、问题见图 2、解题代码 clear x(1)0; ybuchang0.01; y0:ybuchang:10; for n1:length(y)x(n1)x(n)ybuchang^(1/0.23)0.01*ybuchang; end plot(x(1:(end-1)),y,r) 3 结果:

计算物理中matlab处理微分方程解析解和欧拉法数值解的算法演示

我先来看一个问题的引入: 我们根据题目给出的微分方程编写matlab求解代码如下: syms cd m g v(t); eqn diff(v,t) g - cd/m*v^2; vt dsolve(eqn,cond)求解结果如下: 在得知相关初始条件后,对代码进一步设置求解: …

chatgpt赋能python:Python解代数方程,让你轻松求解复杂方程!

Python解代数方程,让你轻松求解复杂方程! 代数方程一直都是数学领域一个非常关键的研究领域,而求解这些方程也是一个非常复杂而又繁琐的任务。Python作为一门高效且强大的编程语言,可以帮助我们快速、准确地解决代数方程问题。在…

matlab解方程

工具/材料 matlab 2016a 打开matlab,首先定义变量x: syms x; matlab中solve函数的格式是solve(f(x), x),求解的是f(x) 0的解。 第一个例子,求解最常见的一元二次方程x^2-3*x10: solve(x^2-3*x1,x),解出的结果用精确的…

欧拉法与梯形法求解微分方程【含matlab源代码】

本文介绍两种入门级求解微分方程的方法 —— 梯形法与欧拉法。 将上述方程组改写成matlab语言: function F fun(t,Y)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % 程序作…

【计算方法】python求解常微分方程|显式欧拉、改进欧拉、龙格库塔

显式欧拉 import numpy as np from scipy.integrate import odeintdef f(x,y):return y-2*x/y def f_ode(y,x):return y-2*x/ydef Explicit_Euler(f,a,b,y0,h):x_p np.linspace(a,b,int(1/h)1)n len(x_p)value np.zeros(n)value[0] y0for i in range(1,n):value[i] value…

【Matlab】求解微分方程{上}(通解和特解)

求解微分方程 desolve函数实例1实例2实例3实例4 求解有条件的微分方程微分方程显示隐式解未找到显式解决方案时查找隐式解决方案求微分方程级数解为具有不同单边限制的函数指定初始条件(特解)练习题 desolve函数 S dsolve(eqn)求解微分方程eqn&#xf…

常微分方程数值解——差商、欧拉公式详细推导及代码实现

引言 在自然科学的许多领域特别是科学与工程计算中,经常会遇到常微分方程的求解问题。然而只有非常少数且十分简单的微分方程可以用初值等方法求得它们的解,多数只能近似方法求解。 一、预备知识 (差商的推导) 二、 一阶常微分方…

PINN解偏微分方程实例3(Allen-Cahn方程)

PINN解偏微分方程实例3之Allen-Cahn方程 1. Allen-Cahn方程2. 损失函数如下定义3. 代码4. 实验细节及复现结果参考资料 1. Allen-Cahn方程 考虑偏微分方程如下: u t − 0.0001 u x x 5 u 3 − 5 u 0 u ( 0 , x ) x 2 c o s ( π x ) u ( t , − 1 ) u ( t , 1 …

chatgpt赋能python:用Python解方程

用Python解方程 介绍 解方程是数学中最基础的技能之一,也是很多实际问题中必须掌握的技能。Python是一种功能强大的编程语言,通过它,我们可以编写程序来解方程。在本篇文章中,我们将介绍如何使用Python来解方程。 Python中的方…

PINN解偏微分方程--程函方程

目录 前言 一、什么是程函方程? 二、配置环境及库的导入 三、构建训练数据集 四、用Pytorch搭建PINN网络 1.网络搭建 2.一些基本参数变量的确定以及数据格式的转换 五、用Pytorch搭建PINN网络 六、查看loss下降情况 七、导入网络模型,输入验证数据&#…